The marine microalgae Chaetoceros calcitrans was cultured under a fluorescent lamp (CON) and light-emitting diodes (LEDs) of various wavelengths (blue, LB; red, LR; green, LG; white, LW); changes in growth, fucoxanthin, chlorophyll-a, amino acid and fatty acid profiles were investigated. LR-exposed cultures exhibited the highest specific growth rate (SGR) (0.34), whereas LG-exposed cultures showed the lowest SGR (0.26). After cultivation for 10 days, the maximum dry cell weight (g/L) of LR-exposed cultures was significantly higher than that of those exposed to other light conditions (LR≥ CON>LB≥LW≥LG). Eicosapentaenoic acid (EPA) levels were significantly higher in CON-exposed cultures compared to those exposed to LW (P<0.05), with no marked difference compared to those exposed to LB, LR and LG (P>0.05). The fucoxanthin content was highest in LB-exposed cultures (6.3µg/mL), whereas LW showed the lowest (3.6µg/mL; P<0.05). Chlorophyll-a content was highest in cultures exposed to LB compared to other light sources. These results suggest consistent differences in growth and biochemical composition after exposure to light of different wavelengths.