논문 상세보기

연탄재를 활용한 도자기 소지 개발 KCI 등재

Development of Clay Bodies using Municipal Waste Coal Briquette Ashes

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/328365
서비스가 종료되어 열람이 제한될 수 있습니다.
한국폐기물자원순환학회지 (Journal of Korea Society of Waste Management)
한국폐기물자원순환학회 (Korea Society Of Waste Management)
초록

Coal briquette ash is an inorganic and non-combustible material. Although coal briquette ash is mainly composed of SiO2, Al2O3, and is an acceptable raw industrial material (containing Fe2O3, K2O, MgO, CaO, TiO2, and Na2O), it is merely considered waste and is exploited as a building material for concrete admixtures and bricks. Because mullite (3Al2O3 2SiO2), which coal briquette ash contains, is a stable compound with a crystalline structure, it plays essential roles in its fracture strength and bending strength. This study serves the purpose of developing environmentally friendly, economical clay bodies through the use of coal briquette ash as a substitute for kaolin to provide Al2O3 and SiO2. We also investigated the seed effects during sintering process by feeding mullite directly into clay bodies. The results show that in 1,300°C heat, a mixture of 40% coal briquette ash, 40% feldspar/limestone (8 : 2), and 20% clay indicates a fracture strength value of 525 kgf/cm2, an absorption rate of 0.72%, burning shrinkage of 11.5%, and an average bending strength of 0.6 cm, which is superior to other clay bodies. The addition of coral briquette ash in clay bodies promoted mullite formation and grew as mullite acted as a seed. In addition to the developing clay bodies, it can also make an oatmeal-colored glaze to widen the spectrum of its usability. This study will help resolve waste problems, reduce environmental pollution, and raise economic value by using coal briquette ash as a raw material for ceramics. Clay bodies made with coal briquette ash are expected to continuously contribute to the development of the ceramics industry with upcycling effects.

저자
  • 나해리 | Haeri Na
  • 이현수(단국대학교 창의융합제조공학과) | Hyun-Soo Lee (Department of Creative Convergent Manufacturing Engineering, Dankook University)
  • 이지연(단국대학교 창의융합제조공학과) | Chi-Youn Lee (Department of Creative Convergent Manufacturing Engineering, Dankook University) Corresponding author