논문 상세보기

MCTS 기법을 활용한 불완전 정보 카드 게임에서의 인공지능 에이전트 생성 : 하스스톤을 중심으로 KCI 등재

Generation of AI Agent in Imperfect Information Card Games Using MCTS Algorithm: Focused on Hearthstone

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/328918
서비스가 종료되어 열람이 제한될 수 있습니다.
한국게임학회 논문지 (Journal of Korea Game Society)
한국게임학회 (Korea Game Society)
초록

최근 게임분야에서 수준 높은 인공지능 에이전트의 구현은 많은 주목을 받고 있다. 그 중 Monte-Carlo Tree Search(MCTS)는 완전 정보를 가진 게임에서 무작위 탐색을 통해 최적의 해를 구할 수 있는 알고리즘으로, 수식으로 표현되지 않는 경우에 근사치를 계산하는 용도로 적합하다. 하스스톤과 같은 Trading Card Game(TCG) 장르의 게임은 상대방의 카드와 플레이 를 예측할 수 없기 때문에 불완전 정보를 가지고 있다. 본 논문에서는 불완전 정보 카드 게임 에서 인공지능 에이전트를 생성하기 위해 MCTS 알고리즘을 응용하는 방법을 제안하고, 현재 서비스되는 하스스톤 게임에 적용하여 봄으로써 MCTS 알고리즘의 실용성을 검증한다.

Recently, many researchers have paid attention to the improved generation of AI agent in the area of game industry. Monte-Carlo Tree Search(MCTS) is one of the algorithms to search an optimal solution through random search with perfect information, and it is suitable for the purpose of calculating an approximate value to the solution of an equation which cannot be expressed explicitly. Games in Trading Card Game(TCG) genre such as the heartstone has imperfect information because the cards and play of an opponent are not predictable. In this study, MCTS is suggested in imperfect information card games so as to generate AI agents. In addition, the practicality of MCTS algorithm is verified by applying to heartstone game which is currently used.

저자
  • 오평(한림대학교 인터랙션디자인) | Pyeong Oh
  • 김지민(한림대학교 인터랙션디자인) | Ji-Min Kim
  • 김선정(한림대학교 인터랙션디자인) | Sun-Jeong Kim
  • 홍석민(한림대학교 광고홍보학과) | Seokmin Hong Corresponding Author