Stainless steel is known as a corrosion-resistant material and this superior ability could be a desired property for a pinhole aperture operated in a corrosive environment and thereby be able to maintain both smoothness and a perfect circular shape in order to achieve precise beam alignment. Laser drilling has widely been preferred when placing holes into stainless steel due to its non-contact method of machining. In addition, this method is capable of performing delicate machining while inducing relatively low amounts of heat in the affected zone in comparison with other traditional machining techniques such as punching. Laser drilling is also beneficial for specimens having a thin thickness since manufacturing tolerances are minimal in this case. In this paper, we have attempted to produce holes of various diameters in 10 m thick stainless steel foil by using a femtosecond laser trepanned method. We have demonstrated these to be of perfect circular shape and adhering to low tolerance manufacturing by adjusting the beam parameters. In addition, holes with various diameters have been made by employing previously selected machining parameters and the viability of pinhole apertures fabricated by laser drilling have been evaluated.