본 논문에서는 고차미분 연속성을 가지는 형상함수에 기초하여 오일러-베르누이 보 유한요소모델을 정식화하였으며, 다 양한 경계조건들에 대하여 그 성능을 평가하였다. 이러한 유한요소 모델들은 새로이 개발되는 고차 보 이론들과 논로컬 탄 성이론에 기초한 보 이론들의 유한요소해석에 필요하다. 그러나 고차 연속성을 가지는 유한요소에 대한 성능평가는 문헌에 서 찾아보기 어렵다. 따라서 본 연구에서는 C2 및 C3 두 종류의 고차 유한요소들을 정식화하여 외팔보, 단순지지, 고정-힌 지 등의 경계조건들을 적용하고 정적해석을 수행하였다. 고전적인 경계조건들 이외에도 고차 경계조건들이 보의 거동에 미 치는 영향을 비교분석하였다. 경계조건에 따라서는 처짐의 미분 값들이 경계주변에서 진동하는 현상이 관찰되었으며, 이는 기하학적 경계조건들에 대하여 뚜렷이 나타난다. 특히 고정단과 같은 경계에서의 변위의 고차미분 조건은 이러한 불안정한 현상을 유발한다. 본 연구에서 얻어진 결과들은 고차 미분 연속성을 가지는 유한요소 이용에 가이드라인으로서 역할을 할 수 있을 것으로 기대된다.
In this paper, beam finite elements with higher-order derivatives’ continuity are formulated and evaluated for various boundary conditions. All the beam elements are based on Euler-Bernoulli beam theory. These higher-order beam elements are often required to analyze structures by using newly developed higher-order beam theories and/or non-classical beam theories based on nonlocal elasticity. It is however rare to assess the performance of such elements in terms of boundary and loading conditions. To this end, two higher-order beam elements are formulated, in which C2 and C3 continuities of the deflection are enforced, respectively. Three different boundary conditions are then applied to solve beam structures, such as cantilever, simply-support and clamped-hinge conditions. In addition to conventional Euler-Bernoulli beam boundary conditions, the effect of higher-order boundary conditions is investigated. Depending on the boundary conditions, the oscillatory behavior of deflections is observed. Especially the geometric boundary conditions are problematic, which trigger unstable solutions when higher-order deflections are prescribed. It is expected that the results obtained herein serve as a guideline for higher-order derivatives’ continuous finite elements.