To identify genes that commonly respond to the treatment of different insecticides and are responsible for the toleranceenhancement, transcriptomic profiles of larvae treated with sublethal doses of the five insecticides were compared withthat of untreated control. A total of 117,181 transcripts with a mean length of 662 bp were generated by de novo assembly,of which 35,329 transcripts were annotated. Among them, 125, 143, 182, 215 and 149 transcripts were determined tobe up-regulated whereas 67, 45, 60, 60 and 38 genes were down-regulated following treatments with these five insecticides.The most notable examples of commonly responding over-transcribed genes were two cytochrome P450 genes and ninecuticular protein genes. In contrast, several genes composing the mitochondrial energy generation system were significantlydown-regulated in all treated larvae. Considering the distinct structure and mode of action of the five insecticides tested,the differentially expressed genes identified in this study appear to be involved in general chemical defense at the initialstage of intoxication. Their possible roles in the tolerance/resistance development were discussed.