검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 119

        1.
        2024.04 구독 인증기관·개인회원 무료
        A new fumigant, carbonyl sulfide (COS), has potential for use as a replacement for methyl bromide, yet its mechanism of toxicity to insects remains poorly understood. In this study, transcriptome analysis was performed on Tribolium castaneum malpighian tubules and fat bodies, which are known to play an essential role in energy storage and utilization in insect species. In total, upon exposure to COS, 3,034 and 2,973 genes were differentially expressed in the T. castaneum malpighian tubules and fat body, respectively. These differentially expressed genes comprise a significant number of detoxification-related genes, including 105 P450s, 18 glutathione S-transferases (GSTs), 82 ABC transporters, 25 UDP-glucosyltransferases and 42 carboxylesterases and mitochondrial–related genes, including 9 complex Ⅰ genes, 2 complex Ⅱ genes, 1 complex Ⅲ gene, 9 complex IV genes, 8 complex V genes from both malpighian tubules and fat body tissues. Moreover, KEGG analysis demonstrated that the upregulated genes were enriched in xenobiotic metabolism by ABC transporters and drug metabolism by other enzymes. We also investigated the role of carbonic anhydrases (CAs) in toxicity of COS using dsRNA treatment in T. castaneum. These results show that CA genes have a key role in toxicity of the COS. Furthermore, the results of transcriptomic analysis provide new insights into the insecticidal mechanism of COS fumigation against T. castaneum and eventually contribute to the management of this important stored grain pests.
        2.
        2024.04 구독 인증기관·개인회원 무료
        Entomopathogenic fungi serve as eco-friendly alternatives to chemical pesticides. In this study, we investigate the interactions between mosquitoes and Metarhizium anisopliae JEF-157, which showed high insecticidal activity against mosquitoes, by RNA-seq analysis. RNA from mosquitoes was extracted at the median lethal time to identify changes in gene expression. The results showed 580 genes were up-regulated, while 336 genes were down-regulated in fungal treated mosquitoes. Up-regulated genes were related to metabolic and cellular processes such as cytochrome P450, DNA replication, and apoptosis. Down-regulated genes were involved in metabolism pathways such as lysosome, starch and sucrose metabolism, and fatty acid biosynthesis. These results are crucial for elucidating the mechanisms of fungal invasion and interaction in insects, providing insights for future pest management strategies.
        3.
        2023.10 구독 인증기관·개인회원 무료
        In moths, mating behavior is induced by sex pheromones released by the female being recognized by the males’s chemosensory systems. In this study, to understand the recognition of sex pheromones in Maruca vitrata, chemosensory genes were identified via transcriptome analysis of male and female antennae and heads. Approximately, 11.1Gb, 10.8Gb, 12.1Gb, and 11.6Gb of data were obtained from the antennae and heads of the male and female, respectively. Thirty-seven odorant binding proteins (OBPs), 21 chemosensory proteins, 7 sensory neuron membrane proteins, 102 odorant receptors (ORs), 36 ionotropic receptors, and 39 gustatory Receptors were identified as chemosensory genes from the M. vitrata. Among these genes, 5 OBPs and 4 ORs were specifically expressed in male antennae. These genes are likely to be involved in the sex pheromone recognition of M. vitrata.
        4.
        2023.10 구독 인증기관·개인회원 무료
        The onion thrips, Thrips tabaci (Thysanoptera: Thripidae), is a worldwide pest that causes serious damage to Allium crop species and acts as a vector for iris yellow spot virus (IYSV). In a previous study, we established an emamectin benzoate (EB) resistant strain (EB-R) with a 490-fold higher resistance ratio than the susceptible strain (SUS). The EB-R exhibited significantly increased transcript levels of glycine receptor alpha, glutamate-gated chloride channel (GluCl) b, and cytochrome P450 (CYP450) 6EB2 compared to SUS. To identify EB resistance-related genes that are differentially expressed genes between SUS and EB-R, we established an isogenic backcrossing strain and conducted transcriptome analysis after the 4th cycle of isogenic backcrossing. Among the 85 up-regulated genes in the transcriptome data, six cuticular protein genes showed up-regulation. Additionally, CYP450 4g15, which catalyzes the synthesis of cuticular hydrocarbons, exhibited a 6 log2-fold higher expression level in EB-R compared to SUS. Therefore, the elevated expression of genes associated with cuticle protein modification may be significantly is involved in the development of EB resistance.
        12.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Kale (Brassica oleracea var. acephala) is one of the most frequently consumed leafy vegetables globally, as it contains numerous nutrients; essential amino acids, phenolics, vitamins, and minerals, and is particularly rich in glucosinolates. However, the differences in the biosynthesis of glucosinolates and related gene expression among kale cultivars has been poorly reported. In this study, we investigated glucosinolates profile and content in three different kale cultivars, including green (‘Man-Choo’ and ‘Mat-Jjang’) and red kale (‘Red-Curled’) cultivars grown in a vertical farm, using transcriptomic and metabolomic analyses. The growth and development of the green kale cultivars were higher than those of the red kale cultivar at 6 weeks after cultivation. High-performance liquid chromatography (HPLC) analysis revealed five glucosinolates in the ‘Man-Choo’ cultivar, and four glucosinolates in the ‘Mat-Jjang’ and ‘Red-Curled’ cultivars. Glucobrassicin was the most predominant glucosinolate followed by gluconastrutiin in all the cultivars. In contrast, other glucosinolates were highly dependent to the genotypes. The highest total glucosinolates was found in the ‘Red-Curled’ cultivar, which followed by ‘Man-Choo’ and ‘Mat-Jjang’. Based on transcriptome analysis, eight genes were involved in glucosinolate biosynthesis. The overall results suggest that the glucosinolate content and accumulation patterns differ according to the kale cultivar and differential expression of glucosinolate biosynthetic genes.
        4,200원
        1 2 3 4 5