An improvement of the learning speed through Influence Map on Reinforcement Learning
보드게임은 많은 수의 말들과 상태공간을 갖고 있다. 그러므로 게임은 학습을 오래 하여야 한다. 그러나 강화학습은 학습초기에 학습속도가 느려지는 단점이 있다. 그러므로 학습 도중에 동일한 최선 값이 있을 때, 영향력분포도를 고려한 문제 영역 지식을 활용한 휴리스틱을 사용해 학습의 속도 향상을 시도하였다. 기존 구현된 말과 개선 구현된 말을 비교하기 위해 보드게임을 제작하였다. 그래서 일방공격형 말과 승부를 하게 하였다. 실험결과 개선 구현된 말의 성능이 학습속도 측면에서 향상됨을 알 수 있었다.
It takes quite amount of time to study a board game because there are many game characters and many state spaces are exist for board games. Therefore, game must do learning long. But, there is weakness with reinforcement learning. On Learning early, the learning speed becomes slow. If there were equal result that both are considered to be best ones during the course of learning stage, Heuristic which utilizes learning of problem area of Jul-Gonu was used to improve the speed of learning. To compare a normal character to an improved one, a board game was created, and then they fought against each other. As a result, improved character’s ability was improved on learning speed.