논문 상세보기

관측지점별 비동질성 회귀모델을 이용한 기온에 대한 확률론적 예측 KCI 등재

Probabilistic Forecast of Temperature using Station-Specific Nonhomogeneous Regression Model

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/340993
  • DOIhttps://doi.org/10.14383/cri.2017.12.3.277
서비스가 종료되어 열람이 제한될 수 있습니다.
기후연구 (Journal of Climate Research)
건국대학교 기후연구소 (KU Climate Research Institute)
초록

In this paper, we used a nonhomogeneous Gaussian regression model (NGR) as the postprocessing techniques to calibrate probabilistic forecasts that take the form of probability density functions for temperature. We also performed the alternative implementation techniques of NGR, which are stationspecific ensemble model output statistics (EMOS) model. These techniques were applied to forecast temperature over Pyeongchang area using 24-member Ensemble Prediction System for Global (EPSG). The results showed that the station-specific EMOS model performed better than the raw ensemble and EMOS model.

목차
Abstract
  1. 서론
  2. 자료
  3. 연구방법
  4. 연구결과
  5. 결론
  References
저자
  • 장동호(공주대학교 지리학과, Department of Geography, Kongju National University) | Dong Ho Jang
  • 김찬수(공주대학교 응용수학과, Department of Applied Mathematics, Kongju National University) | Chansoo Kim Correspondence