Although many attempts have been made to solve the atmospheric diffusion equation, there are many limits that prevent both solving it and its application. The causes of these impediments are primarily due to both the partial differentiation term and the turbulence diffusion coefficient. In consideration of this dilemma, this study aims to discuss the methodology and cases of utilizing a passive air sampler to increase the applicability of atmospheric dispersion modeling. Passive air samplers do not require pumps or electric power, allowing us to achieve a high resolution of spatial distribution data at a low cost and with minimal effort. They are also used to validate and calibrate the results of dispersion modeling. Currently, passive air samplers are able to measure air pollutants, including SO2, NO2, O3, dust, asbestos, heavy metals, indoor HCHO, and CO2. Additionally, they can measure odorous substances such as NH3, H2S, and VOCs. In this paper, many cases for application were introduced for several purposes, such as classifying the VOCs’ emission characteristics, surveying spatial distribution, identifying sources of airborne or odorous pollutants, and so on. In conclusion, the validation and calibration cases for modeling results were discussed, which will be very beneficial for increasing the accuracy and reliability of modeling results.
In this study, the performances of H2S, NH3, and HCl sensors for real-time monitoring in small emission facilities (4, 5 grades in Korea) were evaluated at high concentration conditions of those gases. And the proper approach for the collection of reliable measurement data by sensors was suggested through finding out the effect on sensor performances according to changes in temperature and humidity (relative humidity, RH) settings. In addition, an assessment on sensor data correction considering the effects produced by environmental settings was conducted. The effects were tested in four different conditions of temperature and humidity. The sensor performances (reproducibility, precision, lower detection limit (LDL), and linearity) were good for all three sensors. The intercept (ADC0) values for all three sensors were good for the changes of temperature and humidity conditions. The variation in the slope value of the NH3 sensor showed the highest value, and this was followed by the HCl, H2S sensors. The results of this study can be helpful for data collection by enabling the more reliable and precise measurements of concentrations measured by sensors.
Particulate matter is known to have adverse effects on health, making it crucial to accurately gauge its concentration levels. While the recent advent of low-cost air sensors has enabled real-time measurement of particulate matter, discrepancies in concentrations can arise depending on the sensor used, the measuring environment, and the manufacturer. In light of this, we aimed to propose a method to calibrate measurements between low-cost air sensor devices. In our study, we introduced decision tree techniques, commonly used in machine learning for classification and regression problems, to categorize particulate matter concentration intervals. For each interval, both univariate and multivariate multiple linear regression analyses were conducted to derive calibration equations. The concentrations of PM10 and PM2.5 measured indoors and outdoors with two types of LCS equipment and the GRIMM 11-A device were compared and analyzed, confirming the necessity for distinguishing between indoor and outdoor spaces and categorizing concentration intervals. Furthermore, the decision tree calibration method showed greater accuracy than traditional methods. On the other hand, during univariate regression analysis, the proportion exceeding a PM2.5/PM10 ratio of 1 was significantly high. However, using multivariate regression analysis, the exceedance rate decreased to 79.1% for IAQ-C7 and 89.3% for PMM-130, demonstrating that calibration through multivariate regression analysis considering both PM10 and PM2.5 is more effective. The results of this study are expected to contribute to the accurate calibration of particulate matter measurements and have showcased the potential for scientifically and rationally calibrating data using machine learning.
인공 고관절 치환술에 사용되는 금속 삽입물은 크기와 성분에 따라 주변 조직과 크고 작은 자화율의 차이를 일으켜 다양한 금속 인공물의 원인이 되며, 영상에 진단적 가치를 떨어뜨린다. 수신대역폭을 높이는 것은 인공물 감소에 효과가 있으나, 높은 수신대역폭은 획득 영상의 신호대잡음비를 감소시키는 단점이 있어 일정 수치 이상으로는 적용 하기에는 어려움이 있다. 딥러닝 알고리즘은 영상의 신호대잡음비를 높이고 전체 영상에서 균일하게 배경 잡음을 제거하는 데 매우 효과적이다. 이에 본 연구에서는 금속 인공물 감소를 위해 기존에 높은 수신대역폭을 이용하는 MARS(metal artifact reduction sequence) 프로토콜과 더욱 높은 수신대역폭을 설정한 프로토콜(Ultra MARS) 을 획득한 후 딥러닝을 이용하여 딥러닝 Ultra MARS로 변환한 후에 금속 인공물의 차이를 비교하였다. 딥러닝 적 용 후 Ultra MARS에서 적용 전 또는 기존의 MARS 기법보다 인공물의 크기가 작게 측정이 되었다. 또한, 인공물의 전체적인 SSIM(structural similarity index measure)에서도 기존의 MARS 기법보다 전체면적이 작게 측정되었 다. 더 나아가 SSIM의 결과 딥러닝 적용 전후의 구조적 유사성 역시 유사하게 나왔다. 딥러닝 알고리즘을 기존에 인공물을 줄이기 위해 사용하는 MARS와 같은 기법에서도 월등하게 높은 수치를 사용하는 강조영상을 획득 가능하 며 영상의 인공물도 줄이며, 영상의 대조도 또한 유지되는 영상을 제공할 수 있을 것으로 사료된다.
In this study, we examined dimensional changes in processing carbon fiber composites using a cost-competitive domestic high-speed router. Lacking temperature compensation features found in typical machines, it faces increased defect rates due to temperature fluctuations during processing. To mitigate this, we defined specific processing temperature conditions, established hole positions as distance references for various temperatures, and measured dimensional changes. This enabled us to calculate necessary dimensional corrections, minimizing thermal deformation.
PURPOSES : Traffic volume, an important basic data in the field of road traffic, is collected from traffic survey equipment installed at certain locations, which sometimes results in missing traffic volume data and abnormal detection. Therefore, this study presents various missing correction techniques using traffic characteristic analysis to obtain accurate traffic volume statistics. METHODS : The fundamental premise behind the development of a traffic volume correction and prediction model is to set the corrected data as the reference value, and the traffic volume correction and prediction process for the outliers and missing values in the raw data were performed based on the set values. RESULTS : The simulation results confirmed that the algorithm combining seasonal composition, quantile AD, and aggregation techniques showed a detection performance of more than 91% compared with actual values. CONCLUSIONS : Raw data collected due to difficulties faced by traffic survey equipment will result in missing traffic volume data and abnormal detection. If these abnormal data are used without appropriate corrections, it is difficult to accurately predict traffic demand. Therefore, it is necessary to improve the accuracy of demand prediction through characteristic analysis and the correction of missing data or outliers in the traffic data.
양식장 부표 등과 같은 해상의 소형 장애물을 탐지하고 거리와 방위를 시각화시켜 주는 해상물체탐지시스템은 선체운동으로 인한 오차를 보정하기 위해 3축 짐벌이 장착되어 있지만, 파도 등에 의한 카메라와 해상물체의 상하운동으로 발생하는 거리오차를 보정 하지 못하는 한계가 있다. 이에 본 연구에서는 외부환경에 따른 수면의 움직임으로 발생하는 해상물체탐지시스템의 거리오차를 분석하 고, 이를 평균필터와 이동평균필터로 보정하고자 한다. 가우시안 표준정규분포를 따르는 난수를 이미지 좌표에 가감하여 불규칙파에 의 한 부표의 상승 또는 하강을 재현하였다. 이미지 좌표의 변화에 따른 계산거리, 평균필터와 이동평균필터를 통한 예측거리 그리고 레이저 거리측정기에 의한 실측거리를 비교하였다. phase 1,2에서 불규칙파에 의한 이미지 좌표의 변화로 오차율이 최대 98.5%로 증가하였지만, 이동평균필터를 사용함으로써 오차율은 16.3%로 감소하였다. 오차보정 능력은 평균필터가 더 좋았지만 거리변화에 반응하지 못하는 한계 가 있었다. 따라서 해상물체탐지시스템 거리오차 보정을 위해 이동평균필터를 사용함으로써 실시간 거리변화에 반응하고 오차율을 크게 개선할 수 있을 것으로 판단된다.
This study evaluates the performance of three theoretical models for correcting dynamic pressure affected by tube length. The experiments involved measuring sinusoidal pressure waves with varying frequency bandwidths, using tubing systems ranging from 20 cm to 300 cm in length including multiple tubing systems connecting three or more tubes. The results showed that the Bergh and Tijdeman models, with constant and variable polytropic parameters respectively, had superior correction performance for various tube lengths, while the Whitmore & Leondes model showed discrepancies. The Bergh & Tijdeman model, with a polytropic parameter of 1.4, is recommended due to its convenience and accuracy. Furthermore, including the inner volume of the pressure transducer in the theoretical model was found to be crucial for accurate correction, as not doing so caused significant errors. The Bergh & Tijdeman model was also found to efficiently correct tube length effects in multiple tubing systems, eliminating the need for time-consuming and laborious experiments.
PURPOSES : The initial smoothness of concrete pavement surfaces must be secured to ensure better driving performance and user comfort. The roughness was measured after hardening the concrete pavement in Korea. When the initial roughness is poor, relatively large-scale repair works, such as milling or reconstruction must be performed. Hence, a method to measure the roughness of the concrete pavements in realtime during construction and immediately correct the abnormal roughness was developed in this study.
METHODS : The profile of a concrete pavement section was measured at a construction site using sensors that were attached to the tinning equipment of the paver. The measured data included outliers and noise caused by the sensor and vibration of the paving equipment, respectively, which were further calibrated. Consequently, the calibrated data were input into the ProVAL program to calculate the roughness based on the international roughness index (IRI). Additionally, the profile of the section was re-measured using another method to verify the reliability of the calculated IRI.
RESULTS : The profile data measured at the concrete pavement construction site were calibrated using methods, such as overlapped boxplot outlier removal and low-pass filtering. The outlier data from the global positioning system (GPS), which was installed to identify the construction distance, was also calibrated. The IRI was calculated using the ProVAL program by matching the measured profile and GPS data, and applying the moving average method. The calculated IRI was compared to that measured using another method, and the difference was within the tolerance.
CONCLUSIONS : A method to measure the roughness of the concrete pavements in real time during construction was developed in this study. Hence, the performance of concrete pavements can be improved by enhancing the roughness of the pavement considerably using the aforementioned method.
최근 원예작물의 지속가능한 생산을 위한 작물 생육환경 센 싱 기반 복합환경제어시스템 연구와 산업적 이용이 부각되면 서, 노지재배에 적용하기 적합한 토양센서 활용 방안 연구가 활발히 이루어지고 있다. 본 연구는 산업 및 연구 현장에서 많 이 사용되고 있는 TEROS 12 FDR 센서(frequency domain reflectometry sensor)를 노지 과수원의 토양에 알맞게 활용 하기 위하여 국내 세 지역 과수원 토양의 토성별 FDR 센서 활 용 방법을 제시하고자 수행하였다. 실제 과수가 재배되고 있 는 각 과수원에서 토양을 채취하여, 토성 및 토양수분보유곡 선을 조사하였으며, 토양별 TEROS 12 센서 Raw 값과 이에 대응하는 용적수분함량 값을 선형 회귀 분석, 3차 회귀 분석을 통해 보정식을 얻은 뒤 제조사에서 제공하는 광질 토양 보정 식과 비교 분석하였다. 채취한 세 과수원의 토양은 모두 토성 이 달랐으며, 토성에 따라 각 보수력에 따른 용적수분함량 수 치에 차이가 있었다. 또한, TEROS 12 센서 보정식에서는 모 든 토양에서 3차 회귀 분석 보정식이 결정계수 0.95 이상으로 가장 높게 나타났으며, RMSE도 가장 낮게 나타났다. 제조사 에서 제공하는 보정식을 사용하여 TEROS 12 센서의 용적수 분함량을 보정할 경우 토양에 따라 실제 수치에 비해 최대 0.09-0.17m3·m-3가량 낮게 나타나, FDR 센서 사용시 적용 토양에 알맞은 보정이 반드시 선행되어야 함을 확인하였다. 또한 토성에 따라 토양의 보수력 구간에 따른 용적수분함량 범위의 차이가 있었으며, 토양 용적수분함량의 수치 해석에 보수력 정보가 수반되어야 할 것으로 나타났다. 또한, 사질이 많은 토양에서는 관수 개시점 측정을 위해 FDR 센서를 활용 하는 데 있어 용적수분함량 측정 범위가 상대적으로 좁아 정 밀도가 떨어질 것으로 판단되었다. 결론적으로 토양에서 FDR 센서를 통해 토양수분의 변화를 알맞게 해석하고 노지 에서 알맞은 관수 시점을 선정하기 위해서는, 적용 토양의 수 분보유특성을 파악하고 FDR 센서 보정을 선행하여 올바른 토양 수분 정보 제공이 필요할 것이다.