세계적으로 환경문제를 해결하기 위한 새로운 바이오 계 그린 제품의 개발을 위한 연구가 대학 및 기관에서 활발하게 진행되어지고 있다. 그 중에서도 합성 석유계 물질인 고분자(Polymer) 재료를 대체 할 목적 및 환경 오염의 개선을 위하여 바이오매스인 천연섬유를 적용한 복합체 연구에 주목하였다. 바이오계 천연섬유강화(FRP) 복합체는 경량, 저비용, 적당한 강도와 경도를 얻는 장점이 있으나, 바이오계 섬유의 표면이 친수성을 가지고 있어 소수성을 가진 폴리머 재료와의 낮은 호환성은 제작된 복합체의 물리적, 화학적 특성을 저하시키는 문제를 가지고 있다. 또한 얼마나 저렴한 비용으로 공급할 수 있는지와 원료가 되는 바이오매스의 공급이 일정해야 한다는 문제점 역시 가지고 있다. 현재 전반적인 산업에 적용되고 있는 재료로서 목질계(Lignocellulosic) 자원이 바이오 복합체의 재료로서 사용되어지고 있지만 안정적인 공급을 위한 시간이 매우 오래 걸리고 그에 따른 생산성의 결실이 낮거나 비용이 증가되는 문제점을 가지고 있어 활발하게 적용되지 못하는 문제가 있다. 최근 안정적인 공급 및 낮은 가격을 가진 천연섬유(예: Kenaf, Jute, Hemp, EFB 등)를 이용한 섬유강화 재료로서 FRP(Fiber Reinforced Plastics)를 제작하는 연구가 활발하게 진행되고 있지만, 충진제(Filler) 재료로 사용되는 천연섬유의 친수성(Hydrophilic) 표면과의 호환성 문재로 인하여 전처리를 하여 호환성을 높이는 공정이 필요한 문제가 있다. 이는 제작 가격의 상승과 화학물질 사용 혹은 처리시간의 증가로 인하여 문제점을 발생시킨다. 본 연구는 낮은 가격 및 안정적으로 공급이 가능한 바이오매스 중에서 전 세계적으로 가장 많이 확보 가능한 천연농업 폐기물인 밀짚과 환경적 부하를 줄이기 위하여 생분해가 가능한 생분해성 플라스틱인 PLLA (L,L-lactide)를 선정하여 복합체 개발을 목적으로 진행하였으며, 매트릭스 폴리머와 섬유의 호환성을 증가시키기 위하여 새로운 전처리 방법으로 과열수증기(Super-Heated-Steam : SHS)방법을 적용하였다. SHS 처리된 섬유는 PLLA 매트릭스와 복합화를 위해 1 : 9, 1.5 : 8.5, 3 : 7 비율로 각각 복합화 하였고, 제작된 바이오 복합체는 열 중량 분석, SEM을 이용하여 섬유와 매트릭스 폴리머와의 결합 단면을 확인하였다. SHS 처리이후 섬유의 열 안정성과 분해 온도의 증가 및 매트릭스 폴리머와의 호환성이 증가되어 화학적, 물리적 특성이 증가된 것을 확인되어 SHS를 이용한 전처리는 섬유와 매트릭스(polymer) 사이의 좋은 계면 접착을 충분히 기대할 수 있는 전처리 방법인 것으로 나타났다.