간행물

한국폐기물자원순환학회 학술대회자료집

권호리스트/논문검색
이 간행물 논문 검색

권호

2015년 추계학술발표회 논문집 (2015년 11월) 173

1.
2015.11 서비스 종료(열람 제한)
하수슬러지의 해양배출은 2005년 77%, 2009년 47%, 2013년 14%로 점점 감소했으며, 유기성 슬러지의 직매립 금지, 런던협약에 의한 2012년부터 하수처리 슬러지의 해양투기가 전면 금지됨에 따라 전면적으로 육상처리를 위해 공공처리시설 및 민간위탁 시설에서 재활용 및 소각 등으로 대응하고 있으나 처리에 한계가 있다. 에너지 가격 상승에 따라 슬러지 처리비용이 지속적으로 상승하고 있어 설치・운영비 절감을 위해서는 육상처리 시설의 조속한 확충과 더불어 발생원에서 슬러지 감량화, 슬러지 처리 신기술개발이 필요하다. 이를 대체 할 처리 방법으로 우리나라와 중국 등에서 건조연료화 기술이 개발되어 적용하고 있다. 본 연구에서는 각종 사업장 폐수처리시설에서 다양하게 배출되는 폐수슬러지의 적정처리 및 재이용을 위하여 유중증발 건조기술을 이용하여 슬러지를 처리한 후 건조 전・후의 공업분석, 원소분석, 중금속분석, 발열량 측정을 하고 반응시간, 반응온도와 같은 건조조건에 따른 슬러지의 함수율 변화를 측정하여 각 조건에 따른 특성을 분석하여 유중증발 건조기술에 의한 폐수슬러지의 안정적이고 효율적인 처리 방법을 고찰하고 각종 산업단지에서 배출되는 폐수슬러지 성분에 포함된 다량의 중금속 등을 처리, 처분 시 용출량을 최소한으로 줄이고, 처리된 용융 부산물의 품위에 따라서 재이용, 재활용을 하기 위해서 용융실험을 수행하여 폐수슬러지를 친환경적이고 경제적으로 활용할 수 있는 기술을 개발하고자 한다.
2.
2015.11 서비스 종료(열람 제한)
세계적으로 환경문제를 해결하기 위한 새로운 바이오 계 그린 제품의 개발을 위한 연구가 대학 및 기관에서 활발하게 진행되어지고 있다. 그 중에서도 합성 석유계 물질인 고분자(Polymer) 재료를 대체 할 목적 및 환경 오염의 개선을 위하여 바이오매스인 천연섬유를 적용한 복합체 연구에 주목하였다. 바이오계 천연섬유강화(FRP) 복합체는 경량, 저비용, 적당한 강도와 경도를 얻는 장점이 있으나, 바이오계 섬유의 표면이 친수성을 가지고 있어 소수성을 가진 폴리머 재료와의 낮은 호환성은 제작된 복합체의 물리적, 화학적 특성을 저하시키는 문제를 가지고 있다. 또한 얼마나 저렴한 비용으로 공급할 수 있는지와 원료가 되는 바이오매스의 공급이 일정해야 한다는 문제점 역시 가지고 있다. 현재 전반적인 산업에 적용되고 있는 재료로서 목질계(Lignocellulosic) 자원이 바이오 복합체의 재료로서 사용되어지고 있지만 안정적인 공급을 위한 시간이 매우 오래 걸리고 그에 따른 생산성의 결실이 낮거나 비용이 증가되는 문제점을 가지고 있어 활발하게 적용되지 못하는 문제가 있다. 최근 안정적인 공급 및 낮은 가격을 가진 천연섬유(예: Kenaf, Jute, Hemp, EFB 등)를 이용한 섬유강화 재료로서 FRP(Fiber Reinforced Plastics)를 제작하는 연구가 활발하게 진행되고 있지만, 충진제(Filler) 재료로 사용되는 천연섬유의 친수성(Hydrophilic) 표면과의 호환성 문재로 인하여 전처리를 하여 호환성을 높이는 공정이 필요한 문제가 있다. 이는 제작 가격의 상승과 화학물질 사용 혹은 처리시간의 증가로 인하여 문제점을 발생시킨다. 본 연구는 낮은 가격 및 안정적으로 공급이 가능한 바이오매스 중에서 전 세계적으로 가장 많이 확보 가능한 천연농업 폐기물인 밀짚과 환경적 부하를 줄이기 위하여 생분해가 가능한 생분해성 플라스틱인 PLLA (L,L-lactide)를 선정하여 복합체 개발을 목적으로 진행하였으며, 매트릭스 폴리머와 섬유의 호환성을 증가시키기 위하여 새로운 전처리 방법으로 과열수증기(Super-Heated-Steam : SHS)방법을 적용하였다. SHS 처리된 섬유는 PLLA 매트릭스와 복합화를 위해 1 : 9, 1.5 : 8.5, 3 : 7 비율로 각각 복합화 하였고, 제작된 바이오 복합체는 열 중량 분석, SEM을 이용하여 섬유와 매트릭스 폴리머와의 결합 단면을 확인하였다. SHS 처리이후 섬유의 열 안정성과 분해 온도의 증가 및 매트릭스 폴리머와의 호환성이 증가되어 화학적, 물리적 특성이 증가된 것을 확인되어 SHS를 이용한 전처리는 섬유와 매트릭스(polymer) 사이의 좋은 계면 접착을 충분히 기대할 수 있는 전처리 방법인 것으로 나타났다.
3.
2015.11 서비스 종료(열람 제한)
바이오매스는 산업혁명을 거치며 전 세계적으로 화석연료가 이용되기 시작한 이후에도 여전히 중요한 에너지원의 일부를 차지해 왔다. 이는 탄소 중립적인 연료로써 적절한 활용을 통해 지구 온난화 문제해결의 중요한 대안의 하나이며, 신재생연료로 활용가치가 매우 크다고 평가받고 있다. 또한 현대 문명이 만들어낸 혁신적인 제품으로서 20세기를 주도하는 기술 중 하나인 플라스틱은 생산과 소비가 증가함에 따라 빚어진 부산물로 폐플라스틱의 소각 처리 시 높은 발열량과 제 2차 오염물질 발생 등으로 인해 심각한 환경오염 문제를 일으키는 요인으로 알려져 있다. 따라서 목재 및 플라스틱의 재활용에 대한 필요성이 대두됨에 따라 이들 혼합연료를 에너지원으로 사용하기 위한 연구가 선행되어져 있으나 그 중에서도 바이오매스량 산정에 대한 방법과 기초데이터는 부족한 실정이다. 본 연구에서는 목질계 바이오매스인 목재와 PE를 혼합 목재의 함량을(100%, 80%, 50%, 30%, 10%, 0%)한 연료를 실험실의 반응로에서 연소시켜 배출되는 가스를 포집하여 배출 가스 내의 바이오매스 함량을 가속기질량분석법 (AMS: Accelerator Mass Spectrometry)를 통해 분석하였다. 또한 목재와 PE을 혼합한 고체 연료를 용해선별법(SDM: Selective Dissolution Method)을 통해 고체 혼합연료 내의 바이오매스 함량을 분석하였다. 분석한 결과 연소 후 배출가스를 통한 AMS분석은 목재를 100%, 80, 50, 30, 10, 0의 비율로 연소시켰을 때 결과 값이 100%, 73, 40, 22, 9, 2의 바이오탄소 함량 결과를 얻었으며, 고체연료의 SDM을 통해서는 목재가 100%, 80, 50, 30, 10, 0의 비율로 혼합되었을 때 99%, 74, 44, 27, 9, 1의 바이오매스 함량 결과를 얻었다. 목재와 PE의 바이오매스 함량은 일반적으로 100%와 0% 이나 목재 중의 이물질이 포함되어 있고, PE의 경우 순수한 원료가 아닌 농촌폐비닐을 재활용한 재생 PE제품으로 이에 따른 바이오매스 함량이 변화가 있음을 알 수 있었다. 또한 연료의 혼합 비율에 따라 바이오매스가 포함 되어있고, 연소 후 배출가스 속의 바이오탄소 함량이 고체 연료의 바이오매스 함량과 비교하였을 때 오차가 5%이내 임을 알 수 있었다.
4.
2015.11 서비스 종료(열람 제한)
현재 국내에서 은행나무(maidenhair tree)는 상당 부분의 가로수를 차지하고 있으며, 계절 특성상 늦가을을 중심으로 가지치기가 행하여진다. 이때 상당량의 잔재목이 발생되며, 이를 저장하여 4계절동안 사용하는 것이 방법이 고려되는 것이 필요하다. 또한 볏짚 역시 수확기인 가을에 대량으로 발생되는 특징을 갖는다. 이를 전부 비료화하여 이용하는 것은 어렵다고 생각된다. 따라서 계절적으로 다량으로 발생되는 잔재목 및 볏짚을 효율적으로 저장하기위한 방법으로 반탄화를 고려하였다. 물론 반탄화 이후 분진폭발 등의 고려가 필요하며, 물을 첨가하는 방법이 생각될 수 있다. 본 연구에서는 은행나무의 잔재목 및 볏짚을 반탄화하여 이용하는 경우의 중량 및 성상의 변화에 대하여 연구를 실시하였다. 반탄화는 세루로스(Cellulose) 및 리그닌(Lignin)에 비하여 상대적으로 열분해가 용이한 헤미세룰로스(Hemicellulose)를 가스화하여 발열량을 높이고, 적체적인 중량을 감소시키는 방법으로 보관 및 저장에 용이한 장점이 있다. 반탄화 온도는 약 200℃∼350℃범위에서 실시하였으며, 은행나무 및 볏짚의 반탄화물은 TGA (Thermogravimetric Analysis)를 실시하여 가열온도 구간에 따른 질량의 감소의 변화를 관찰하였다. 반탄화에 의한 중량 감소는 온도의 증가에 따라 증가하였으며, 발열량의 증가도 이와 같은 경향을 나타냈다. (은행나무의 경우 초기 2100 kcal/kg에서 반탄화 후 최고 4800kcal/kg) 이는 수분의 증발(목재의 경우는 초기가 약 27%에서 반탄화 후 3,2%) 및 목재 중 산소의 성분의 감소(원소분석 결과 산소는 약 28%∼32%)에 의한 것으로 사료되었다. 반면 탄소의 함유량 변화는 미미 하였으며, 수소의 감소량 역시 상대적으로 적었다. 따라서 C/H(탄소/수소)는 상대적으로 증가였다. 특히 볏짚의 경우가 상대적으로 C/H의 증가가 높았다. 반탄화화에 의한 중량 감소는 은행나무는 약 55%까지 볏짚의 경우 67%)까지 가능한 것으로 판단되었으며, 이에 따른 석탄발전소의 운반 및 이용이 용이할 것으로 사료된다.
5.
2015.11 서비스 종료(열람 제한)
매립지에서 발생하는 메탄은 6대 온실가스 중 하나로서 이산화탄소의 21배의 온실효과를 갖는다. 매립층에서 발생한 매립가스는 복토층을 통과할 때 Methanotrophs 박테리아에 의해 산화된다. Intergovernmental Panel on Climate Change (IPCC)는 10%의 산화율을 기본값으로 제시하고 있다. Chanton et al. (2009)는 40가지 이상의 측정 결과들을 종합하여 IPCC 가이드라인이 산화율을 과소 평가하고 있는 것으로 보고하였다. 또한 메탄의 산화는 기후, 복토재 등 현장 특이적 영향을 많이 받아 국가고유계수를 개발하여 사용하는 것이 바람직하다. 따라서 본 연구에서는 가스배제공과 지표면에서 매립가스 성상을 비교하여 산화율을 산정하였다. 매립가스 분석은 다섯 곳의 매립지에서 수행되었다. 비분산적외선(Non-dispersive Infrared, NDIR) 검출기를 이용해 메탄과 이산화탄소의 농도를 측정하였다. 지표면 매립가스 발산은 플럭스 챔버를 이용해 측정하였다. 산화율 산정 시 산화된 메탄은 모두 이산화탄소로 변화되며, 이산화탄소 농도의 증가는 메탄 산화에 따른 것으로 가정하였다. OX의 산정은 측정값의 평균, 중간값, 공간분석 적용 결과 세 가지를 이용해 산정하였다. 평균을 이용해 산화율을 산정했을 때 –67 ~ 93%로 극대값에 의해 굉장히 큰 오류가 나타났다. 중간값을 사용한 경우 산화율은 87 ~ 99%로 나타나 산화율이 과대 산정되었다. 공간보간법을 적용했을 때 산화율은 42 ~ 88%로 나타났다. 공간보간법을 사용했을 때 한 곳을 제외한 세 곳의 매립지의 산화율은 42 ~ 48%의 산화율을 보여 Chanton et al. (2009)가 발표한 36%와 유사한 결과를 도출하여 공간보간법을 적용하여 산화율을 산정하는 것이 합리적임을 알 수 있다. 따라서 본 연구 결과를 통해 산화율 산정 시 공간보간법을 적용해야하며, IPCC 가이드라인 기본값이 산화율을 과소평가하고 있음을 확인할 수 있었다.
6.
2015.11 서비스 종료(열람 제한)
선진국(미국, 일본, 독일 등)들은 산업원료로 활용되는 금속자원의 40%이상을 폐금속 자원 순환을 통해서 확보하고 있으며 국내 비철금속 및 희유금속 회수 재활용은 15% 정도로 우리나라의 재활용률은 매우 저조한 실정이다. 현재 우리나라 폐금속 자원 순환은 대부분 Oil Burner 용해로를 사용하고 있어 에너지 및 자원 회수율이 낮고 환경오염이 심하다. 따라서 폐자원의 적절한 처리시설의 개발이 시급한 문제로 다가오고 있으며 이를 동시에 해결할 수 있는 방안이 개발 되어야 할 것이다. 본 연구는 전기로(SAF)를 이용하여 폐자원으로부터 자원 회수공정을 제시하고 이를 바탕으로 실험실 규모의 설비를 구성하여 검증하고 그 결과를 바탕으로 2톤/일 규모의 설비를 제작하여 자원회수량을 평가하였다. AC Type의 전기로(SAF)를 기초로 하여 변압기, 급전설비(3상), 로 본체, 승하강 Roof, 원료투입설비로 구성하였다. 로내 Slag장입 후 예열, 용융, 출탕 순서로 조업(3시간/공정)하였으며 이상의 공정을 통해 폐자원으로부터 동 90%를 회수하였다.
7.
2015.11 서비스 종료(열람 제한)
우리나라는 1990년대부터 급속한 산업화와 인구증가로 도시 폐기물양이 증가하고 있다. 그 중 생활폐기물은 매립, 소각, 재활용 등의 방법으로 처리된다. 최근 국내 및 국외 선진국에서는 폐기물과 관련된 정책 및 패러다임을 갖고 최대한 폐기물을 자원순환으로 전환하고 이를 통해 매립처리량을 줄여 국토를 효율적으로 이용하는 방향으로 변모하고 있으며, 따라서 매립처리량이 줄어든 대신 재활용과 소각으로 처리되는 생활폐기물의 양이 증가하고 있다. 소각은 반입되는 폐기물의 약 90% 이상의 부피를 감소시켜 처리하는 것으로, 소각시 발생되는 소각재는 비산재와 바닥재로 나뉜다. 비산재는 소각재의 약 20%를 차지하며, 상대적으로 가볍고 다이옥신 및 유해 중금속성분들이 많아서 지정폐기물로 처리되고 있다. 반면 바닥재는 소각재의 약 80%를 차지하며, 대부분 일반폐기물로 매립 처리되고 있는 실정이다. 소각재 중 많은 양을 차지하고 있는 바닥재는 그 성분이 골재 및 자갈의 특성과 유사하다. 따라서, 여러 선진국에서는 바닥재를 도로건설의 경량 골재로 이용하거나 아스팔트 또는 콘크리트의 골재로 재이용하고 있고, 다른 재활용 제품으로의 사용을 위한 다양한 연구가 진행 중이다. 현재 우리나라에서도 정책적 방향에 따라 소각재를 콘크리트 및 건설자재로 재이용하기 위한 연구가 진행되고 있다. 국내에서는 바닥재를 재활용하기 위해서 “폐기물관리법 제14조의 3 제2항 [별표 5의2] 폐기물의 재활용 기준 및 구체적인 재활용 방법” 35항에 보면 바닥재를 재활용하기 위한 기준을 만족하도록 정하고 있다. 본 연구에서는 해당 기준에 있는 항목(강열감량, pH, 염소화합물, 시안화합물, 중금속 용출실험)들을 실험하여 평가하였으며, 기존의 전처리방법(세정, CO2 강제숙성)을 비교 실험하고, 세정+ CO2주입을 동시에 처리하는 방법을 이용하여 재활용기준을 만족하기 위한 최적 방법을 도출하고자 하였다.
8.
2015.11 서비스 종료(열람 제한)
최근 전 세계적으로 환경오염이나 자원고갈이 급속히 진전되는 가운데, 건설 산업은 타 산업의 생산 활동에 비해 막대한 자원소비와 대량의 폐기물 배출 문제를 야기함으로써 지구의 환경부하를 증대시키는 주요 원인이 되고 있다. 특히 건설폐기물의 발생량은 1995년 국가통계가 기록된 이후 지속적으로 증가해왔으며, 그 양은 국가에서 발생하는 폐기물의 약 50%를 점유하는 수준(2013년 약 66,991,261톤)으로 이러한 추세는 앞으로도 지속될 것으로 예상된다. 국내에서는 이러한 건설폐기물의 적정 관리방안 마련을 위하여 다각적 측면의 검토 및 연구가 진행되어 왔다. 건설폐기물은 처리 지침에 따라 종류별, 처리방법별 분리배출 하여 재활용을 우선적 처리방법으로 하도록 하고 있다. 최근 2013년 국가 통계상 건설폐기물의 재활용률은 97.5%로 나타났다. 하지만 국가 통계상 재활용량은 재활용 시설로 반입되는 폐기물의 양을 나타내며, 공정에서 발생하는 이물질, 부산물, 손실량 등을 고려하지 않은 데이터 이다. 이처럼 국가 통계데이터는 현실적 요소를 반영하지 못하고 있어 실질적인 처리현황으로 판단하기에는 다소 한계가 있다. 이러한 문제점을 해결하고 국가 차원의 재활용 질적 수준과 현황파악을 위해서는 보다 현실성이 반영된 정보가 필요하며, 이러한 측면에서 재활용 시설의 공정파악과 물질흐름분석을 통한 기초자료의 구축이 매우 중요하다. 따라서 본 연구에서는 건설폐기물의 처리 공정 특성을 파악하고, 전과정 단계에 따른 물질흐름분석을 통하여 국가수준의 실질 재활용률을 산정하였다. 본 연구에서는 환경부, 한국환경공단 등의 통계데이터를 활용하였으며, 또한 건설폐기물 재활용시설 현장 실태조사를 통하여 통계 데이터를 검증하고 물질흐름분석 위한 기초 데이터를 수집하였다. 물질흐름분석의 시스템경계는 건설현장에서의 건설폐기물 발생단계부터 최종 처분단계까지를 포함하였으며, 시간적 범위는 2013년 연간 데이터를 활용하였다. 건설폐기물 재활용시설 실태조사 결과 반입되는 건설폐기물은 파쇄・분쇄 및 선별단계를 거쳐 순환골재로 생산되며 처리 공정의 순환골재 생산 수율은 약 83.7% 수준으로 산정되었다. 한편 반입량의 약 16.3%가 이물질로 선별되었으며, 그중 폐합성수지가 반입량의 약 8.43%로 가장 많은 비율을 차지하였다. 선별된 이물질은 각각 성상에 따라 재활용, 소각, 매립으로 배출되는 것으로 나타났다. 이러한 재활용시설의 공정수율과 국가 통계자료를 종합한 국가수준의 건설폐기물 실질재활용률 산정 결과 건설폐기물 발생량의 약 89%가 실질적으로 재활용되는 것으로 분석되었다. 또한 성토 및 복토용과 같은 저급용도(매립형 재활용)의 순환골재를 제외하면 발생량의 약 49.3%가 고급용도의 순환골재로써 재활용 되는 것으로 나타났다. 본 연구에서 실시한 물질흐름분석은 여러 가지 가정을 통하여 수행되었으며, 보다 정확한 건설폐기물 물질흐름분석의 수행을 위해 순환골재 생산시설 이외 다른 재활용 처리시설에 대한 조사가 필요하다. 본 연구의 결과는 건설폐기물 적정 관리를 위한 관련 정책 마련의 기초정보로 활용 될 수 있다.
9.
2015.11 서비스 종료(열람 제한)
Acid mine drainage (AMD) has emerged as one of the greatest environmental threats facing mining industry owing to its characteristic low pH, high acidity and elevated concentrations of metals and sulphate content. This study evaluates the efficiency of fly ash as a low cost material to remove heavy metals (Cu, Fe, Mn and Pb) from AMD. The effects of varying contact time, dosage and pH on adsorption were investigated using synthetically prepared AMD. The experiments was conducted in series of batches for adsorption using a mechanical shaker with 50mL AMD at various dosages of fly ash (0.1 - 0.8g/L) and coagulation using a standard jar tester of 1000mL AMD with chemical coagulant dosages (0.5 - 10g/L). Tests were also conducted with 50mL AMD without fly to evaluate the treatment efficiency of fly ash to chemicals. All tests were performed in duplicate for consistency and accuracy. The chemical composition of fly ash was characterized by X-ray fluorescence (XRF) and the result shows the fly ash is rich in calcium (CaO 54.9%). Leaching test of the fly ash was conducted using KLST and TCLP method to compare the results and evaluate the behavior of leaching ash in replenishing acidic media at low pH such as acid mine drainage. pH plays a significant role in heavy metal uptake in this study with increased in pH value the removal rate increased. The optimum dosage for Adsorption was found to be 0.4g/L with 60 min optimum contact time and coagulation 6mg/L with reduced metal concentrations much less than regulation standards for Cu, Fe, Mn and Pb. From all tests conducted fly ash proves more efficient with over 96% removal even at low dosages. The effectiveness of the treatment process will depend on the quality of the fly ash and the AMD. Therefore the use of fly ash for treatment of mine wastewater would represent a new market opportunity for this waste product. Recycling of fly ash will conserve the natural raw materials and abridge the disposal cost. It will also create new revenues and business opportunities while protecting the environment. Most significantly, the two waste products acid mine drainage and fly Ash could be neutralized and when reacted together to produce much cleaner water broadly compared to post process water derived from Lime treated AMD and sulfates removal rates were in the range of 90% in both experiments. Fly ash is more economical, sustainable.
11.
2015.11 서비스 종료(열람 제한)
정수장 고도화시설 및 육상 하폐수 처리장 증설에 의해 슬러지 탈수케익 발생량도 전 세계적으로 점차 증가하고 있으며 런던협약 ‘96 의정서 발효와 함께 해양투기 금지에 따른 각종 슬러지의 육상 처리의 필요성이 증대되었으나, 처리기술 부재에 의한 막대한 처리비용이 예상되어 이의 안정화된 재활용 처리 방안이 시급한 실정이다. 또한 에너지 사용량이 증가되고 에너지 비용이 크게 증가되고 있는 상황에서 생산과 소비생활에서 발생하는 슬러지의 처리와 에너지저감형 처리기술이 개발되어야 할 것이다. 본 연구는 에너지 저감형 처리기술로 저온건조기술을 제시하고 실험실 규모의 장치를 이용하여 이론 검증하고 그 결과를 통해 5톤/일 규모의 설비를 제작, 슬러지 처리 및 성능을 평가하였다. 수분 분석계를 통해 투입 슬러지의 함수율을 측정한 결과 80% 정도였으며 24시간 건조공정 후 배출 슬러지의 함수율은 30% 내외였다. 공정 중 투입되는 저온열풍은 100℃미만을 유지하였으며 투입되는 공기의 습도와 슬러지 건조 후 배출되는 공기의 습도 차이를 통해 투입하는 저온열풍의 양을 자동으로 조절하도록 구성하였다. 건조처리 공정시 사용된 총 에너지량은 (정수슬러지) 260kW/ton확인하였다.
12.
2015.11 서비스 종료(열람 제한)
폐수 내 존재하는 인은 수질에 부영영화를 일으키며 생물학적 처리가 어렵다. 인을 처리하는 방법 중 Mg2+을 결정핵으로 이용하여 struvite로 회수하는 방법은 인 제거효율이 높고 회수 후 비료로 이용할 수 있는 장점이 있다. 본 연구에서는 축산폐수를 이용하여 struvite를 형성하는데 있어, pH 조절제에 따른 phosphate 제거율을 알아보기 위해, 8 N NaOH와 pH buffer solution으로 쓰이는 0.2 M glycine and 0.2 M NaOH, 0.2 M Na2CO3 and 0.2 M NaHCO3, 및 0.05 M borax and 0.2 M NaOH를 사용하였으며, struvite가 잘 형성되는 pH9로 조절하였다. 폐수 내의 인의 농도는 음이온 컬럼(A supp 5 150, Metrohm)이 장착된 ion chromatography(883 basic IC plus, Metrohm)를 이용하여 측정하였고, 표준곡선은 Multi Element IC Std 1 Solution A(highpuritystandards, USA)을 이용하여, 2 ppm ~ 20 ppm 사이의 농도로 작성하였다. Struvite 결정화 반응 5분 후에 인산염 제거율이 각각 100%, 100%, 97.31%, 96.5%, 95.93%로 나타냈으며, 각 pH 조절제를 첨가한 실험구의 결정화 후 pH는 각각 9.02, 9.22, 9.05, 9.11이었다. 회수된 struvite는 증류수에 0.1%, 0.2%, 0.3%, 0.4%, 0.5%(w/v)로 용해시켜, 시간의 변화에 따른 용해율을 알아보았다. 대조군으로는 시중에 판매되는 양액을 기준으로 비교하였다. 그 결과, 양액의 인산농도는 117.788 mg/L로 일정한 반면, struvite가 들어간 실험군은 용해 초기 값인 42~67 mg/L에서 36시간 결과 후 3~4배(172.13~194.1 mg/L)로 인산염 농도가 증가하였다. Struvite 0.1 g를 황산 95%(Duksan, Korea) 25 mL에 용해시켜 녹인 후, 증류수 25mL를 첨가하여 최대 용해되는 struvite 인산염 농도는 2000 mg/L였다. 그러므로 struvite 용해 실험은 더 진행해야 할 것이며, struvite는 서서히 용출되는 완효성비료로 사용가능할 것이다.
13.
2015.11 서비스 종료(열람 제한)
현재 인류는 천연자원의 지속적인 사용량 증가로 인하여 대상 자원의 매장량 한계와 더불어 자원의 가격 상승을 초래하는 문제를 직면하고 있다. 이에 맞춰 순환자원 가치의 중요성이 대두되고 있으며, 순환자원을 이용한 재활용 제품의 용도를 개발하여 다원화하고 활용 할 수 있는 방안을 적극적으로 개발하고 있으며 확대 되고 있다. 현재 국내 지자체의 재활용 선별장은 생활계에서 배출되는 폐플라스틱을 PP, PS, PE, PET 등으로 근적외선 분광법(NIR)을 이용해 자동 선별하여 물질 재활용에 기여하고 있으나, 검은색 플라스틱 제품군의 경우 해당 기법으로는 자동선별의 한계점을 직면하고 있다. 검은색 플라스틱 제품군은 소비자들이 선호하는 색상 중 하나로 생산량과 수요량이 증가하는 반면, 자동선별이 불가능하여 인력에 의한 수선별로 작업환경과 작업자 안전의 문제점을 야기함과 동시에 선별율도 저조하다. 일부 재활용 선별장에서는 잔재물과 함께 소각 및 매립 처리함으로써 2차 환경오염 문제와 경제적 문제를 가지고 있다. 따라서, 생활계 검정색 플라스틱의 재질별 자동선별의 효율성을 향상시키기 위하여 분광학 기법을 통하여 데이터를 획득하고 지능형 알고리즘의 도움으로 검정색 플라스틱의 재질별 자동선별을 실현하고자 한다. 본 연구에서 사용한 ATR-FTIR(Attenuated Total Reflectance-Fourier Transform Infrared)분광법은 진동전이(Vibrational transition)에 의한 물질의 고유한 흡수 스펙트럼이 뚜렷이 나타나고, 대상 물질의 전처리가 거의 없이 빠른 시간 안에 고유한 정량 분석이 가능하다. 또한 비파괴 분석방법으로 여러 분야에 활용되고 있는 것이 장점이다. 여기에 검은색 플라스틱을 인공지능 알고리즘을 통하여 재질별 자동 선별하도록 시스템화하여 산업적・경제적인 효율의 향상을 기대 할 수 있다.
14.
2015.11 서비스 종료(열람 제한)
최근 세계 경기불황으로 인하여 원자재 가격이 상승하고 국제 환경규제의 강화 등으로 인하여 일시적으로 일부 금속류 등의 수급 불균형을 초래하면서, 순환자원의 재활용에 대한 관심이 높아지고 경제적 가치가 부각되고 있다. 일상생활의 편리성 증대와 밀접한 관계를 가지는 전자제품은 많은 양의 자원을 포함하고 있으며, 전자제품의 제조기술 등의 발달로 대량생산과 대량소비가 이루어지면서 폐전자제품이 지속적으로 발생하고 있어 환경적인 문제를 일으키고 있다. 이에 정부는 폐전기・전자제품의 재활용 활성화를 위하여 EPR 제도를 도입하여 시행하고 있으며, 2014년 폐소형가전까지 EPR 대상품목에 포함하여 확대 지정하였다. 폐소형가전의 경우 현재 다양한 품목이 가정에 보급되어 사용되고 있어 향후 폐기되는 양이 크게 증가할 것으로 예상되며, 폐가전제품 무상방문 수거서비스를 중소형가전으로 확대 실시할 예정으로 재활용 대상 폐가전제품의 발생량은 대폭 늘어날 것으로 예측되고 있다. 폐소형가전은 대형가전제품에 비해 플라스틱의 함량이 비교적 높을 뿐만 아니라 검정색 플라스틱의 비율이 상대적으로 높으나 플라스틱 재질선별이 제대로 이루어지지 못하고 혼합물(Mixed plastics) 형태로 저가 매각되고 있는 실정이다. 또한, 기기의 종류 및 품목에 따라 내부 구성 물질과 플라스틱 재질이 다양하여 해체 및 선별에 특정 기술의 적용이 어려운 실정으로, 중소재활용업체에서 인력에 의한 수선별을 통하여 일부 유용자원을 회수하고 있다. 본 연구에서는 폐소형가전제품의 플라스틱 재활용을 위하여 발생량 상위 5개 품목(선풍기, 전기밥솥, 비데, 청소기, 전기히터)의 해체 특성과 내부 구성 물질 및 플라스틱의 물리적 특성 분석을 통하여 재활용 가능성을 검토하였다. 해체 특성 분석결과 플라스틱의 함량은 전기히터 66.5 %, 비데 66.3 %, 청소기 47.4 %, 선풍기 38.4 %, 전기밥솥 35.1 %의 순으로 나타났으며, 최근에는 소형가전제품에 철금속류의 사용량을 줄이고 플라스틱과 비철금속류의 사용량이 증가하는 것으로 분석되었다. 검정색과 유색 플라스틱의 비율은 각각 11.9 % 및 88.1 %로 조사되었으며, 유색 플라스틱의 경우 중량물(PS, ABS 등) 87.1 %, 경량물(PP 등) 12.9 %, 검정색 플라스틱은 중량물(PS, ABS 등) 82.1 %, 경량물(PP 등) 17.9 %로 분석되었다. 폐소형가전에 대한 지속적인 특성 분석 자료 확보를 통하여 품목별 구성 물질이 다양한 폐소형가전의 효율적인 플라스틱 재활용을 위한 해체 및 선별 기술 개발의 기초 자료로 활용하고자 한다.
15.
2015.11 서비스 종료(열람 제한)
미생물연료전지(Microbial fuel cells, MFCs)의 성능은 미생물이 부착 성장하는 산화전극의 활성에 의해 크게 영향을 받는다. 미생물연료전지의 산화전극 활성은 전극표면의 높은 생물친화도, 미생물이 부착성장 할 수 있는 넓은 표면적, 전기전도도 등에 의해서 결정된다. 지금까지 연구되어 온 미생물연료전지의 산화전극 재료들은 주로 다공성유리탄소, 탄소천, 탄소섬유 브러쉬, 흑연펠트, 흑연섬유 등의 탄소계열의 전도성 물질들이었다. 그러나, 이러한 탄소계열 물질들은 그 종류에 따라 비표면적이 작거나, 표면이 소수성이며, 금속과 비교할 때 전도성이 좋지 않은 특성을 가진 것들이 많다. 그러나, 서로 다른 특성을 가지는 탄소계열 물질들을 동시에 사용함으로서 각각의 재료들이 가지는 단점들을 보완함으로서 높은 활성을 가지는 미생물연료전지 산화전극을 제작하고자 하는 시도들이 이루어지고 있다. 그러나, 탄소계열 물질들을 동시에 사용하기 위해서는 이러한 재료들을 서로 혼합하고 내부적으로 결합시키기 위한 결합제가 반드시 필요한데 완성된 산화전극의 활성은 결합제의 종류에 의해서 크게 영향을 받는다. 지금까지는 주로 Nafion 용액, 에폭시 등의 고분자 물질들을 결합제로 사용하여 왔는데, Nafion 용액은 전도성 높고 친수성 물질이라는 장점이 있지만 부착력이 낮고 가격이 비싼 고가의 물질이라는 한계점을 가지고 있다. 또한, Epoxy는 부착력이 강한 반면 전도성이 없는 소수성 물질이라는 단점이 있다. 본 연구에서는 콜타르 피치(Coal tar pitch, CTP)에 니켈(Nickel, Ni)을 다양한 비율로 혼합하여 결합제를 제조하고, 이를 이용하여 제작한 팽창흑연과 탄소나노튜브 산화전극의 성능을 회분식 미생물연료 전지를 이용하여 평가하였다. 산화전극 제작에 사용된 결합제의 CTP 양이 적을수록, 전기적 활성은 증가하였으나 부착력이 크게 감소하였다. 또한, CTP에 Ni 함량이 증가할수록 산화전극 표면에 부착 성장한 미생물 생체량이 증가하였으며, 내부저항이 점차 감소하였다. CTP 4g과 Ni 5.9mmol을 혼합하여 제조한 결합제로 제작한 산화전극의 경우 미생물연료전지의 최대전력밀도는 738.11 mW/m²로서 가장 큰 값을 보였으며, 내부저항은 146.19 Ω로서 가장 낮았다. 이 값은 Nafion 용액을 결합제로 사용하여 제작한 대조구 산화전극과 비교할 때 최대전력밀도는 23.68% 높았으며, 내부저항은 33.82% 낮았다. CTP와 Ni을 혼합한 물질은 미생물연료전지의 산화전극제작에 사용할 수 있는 우수한 결합제이다.
16.
2015.11 서비스 종료(열람 제한)
가축분뇨, 하수슬러지 및 음폐수와 같은 유기성폐기물이 해양투기가 전면 금지되면서 육상처리 및 재활용처리가 관심이 되고 있다. 가축분뇨, 하수슬러지와 음폐수를 육상처리할 뿐만 아니라 신재생에너지를 생산할 수 있는 바이오가스화가 그 처리에 좋은 대안으로 부각되고 있다. 최근 가축분뇨 혐기소화시설에서 음폐수를 병합처리 하는 경향이 늘고 있다. 본 연구에서는 가축분뇨만 혐기소화하는 4개 시설과 가축분뇨 혐기소화시 음식물류폐기물을 병합처리하는 9개 시설을 대상으로 현장조사를 실시하였다. 현장조사의 목적은 병합처리 바이오가스화 시설의 설계 및 운전 기술지침서를 마련하기 위하여 기초자료를 수집하고 시설별 운전시 발생되고 있는 문제점들을 조사하여 개선방안을 마련하기 위한 것이다. 또한 계절별로 가축분뇨 바이오가스화 시설 3개와 병합처리시설 6개에 대하여 정밀모니터링을 실시하였다. 병합처리 바이오가스화는 음식물류폐기물과 가축분뇨가 별도로 반입되어 각각의 전처리 및 이송설비를 거쳐서 혐기소화 전에 설치되어 있는 중간저장조에서 합쳐지게 된다. 중간저장조에서 혼합된 음식물류폐기물 및 가축분뇨는 두 유입물이 하나로 합쳐져 혐기소화 공정 이후의 공정들을 거쳐서 처리되게 된다. 따라서 본 연구에서는 병합처리 바이오가스화 시설에 대하여 중간저장조 이전 공정들까지는 음식물류폐기물과 가축분뇨가 별도로 처리 공정을 거치므로 별도의 문제점들과 설계시 가이드라인을 제시하며, 중간저장조부터는 음식물류폐기물과 가축분뇨가 합쳐진 상태의 공통사항으로 문제점들과 가이드라인을 제시하고 있다.
17.
2015.11 서비스 종료(열람 제한)
유기성 폐기물인 하수슬러지는 특성상 다량의 수분과 유기물을 함유하고 있어 처리하기가 까다롭다. 우리나라에서는 하수슬러지를 대부분 매립과 해양투기에 의해 처리했으나 2005년 이후 직・매립이 금지되고 최근 해양투기마저 금지됨에 따라 슬러지 처리방법의 개발이 시급하다. 따라서 본 연구에서는 하수슬러지를 재활용하기 위해 열분해 반응 중 하나인 열수가압탄화 반응을 사용하여 Biochar를 생성하였고 생성된 Biochar의 미세기공을 발달시키기 위해 수산화칼륨(KOH)을 이용하여 화학적 활성화 반응을 통하여 활성 Biochar를 생성하였다. 또한 생성된 Biochar 및 활성 Biochar의 특성을 분석하고 카드뮴(Cd), 구리(Cu), 납(Pb), 아연(Zn), 니켈(Ni)에 대하여 중금속 흡착제로써의 흡착능력 실험을 통해 기존에 연구된 lab-scale실험과 비교평가 하였다. 기존연구에 따르면 하수슬러지를 200ml 용량의 반응기에서 열수가압탄화반응을 통해 하수슬러지 Biochar를 생성하고 수산화칼륨(KOH)을 이용하여 화학적 활성화 반응을 거친 후 카드뮴(Cd), 구리(Cu), 납(Pb), 아연(Zn), 니켈(Ni)에 대해 중금속 흡착능력을 평가한 결과 80% 이상의 효율이 나타났다. 본 연구에서는 하수처리장에서 발생되는 슬러지 중 탈수 후 배출되는 탈수cake를 이용하여 130L 용량의 반응기에 하수슬러지 100kg을 넣고 220℃ 온도에서 2시간 반응을 통해 Biochar를 생성하였다. 생성된 Biochar는 수산화칼륨(KOH)을 이용하여 600℃, 60분에서 화학적 활성화를 진행하였으며 이후 생성된 활성화 Biochar에 대해 삼성분, 원소분석, 중금속 용출, 양이온교환수지(CEC), SEM, FT-IR 실험을 진행하여 기본특성을 분석하였다. 그 후, 카드뮴(Cd), 구리(Cu), 납(Pb), 아연(Zn), 니켈(Ni)에 대하여 등온 흡착실험을 수행하여 중금속 흡착제로써 흡착성능을 비교평가 하였다.
18.
2015.11 서비스 종료(열람 제한)
우리나라의 음식물류폐기물은 수분함량이 80~85% 정도로 높고 부패되기 쉬운 유기성 물질로서 수집과 운반과정에서 악취 및 침출수 유출로 인해 심각한 환경오염을 유발하고 있으며, 특히 음식물자원화 공정에서 고농도의 유기성 폐수(이하 “음폐수”라 함)가 다량 발생되고 있다. 현재 음식물자원화 공정에서 발생하는 음폐수는 공공수역 방류를 위해 자체처리 또는 하수처리장 등 환경기초시설과의 연계처리가 필요하나, 방류수 수질기준 준수부담으로 인해 음폐수를 자체처리한 후에 그 처리수를 하수처리장으로 연계 이송시켜 처리하는 방법이 육상처리법으로 주로 사용되고 있다. 하지만 처리비용 부담 및 처리시설 부족 등으로 육상처리보다 해양배출을 선호하고 있는 실정이다. 그러나 2013년부터 런던협약 󰡔‘96 의정서󰡕의 발효에 따라 해양배출의 제약사항이 강화되었고, 이에 따라 가축분뇨 및 하수오니, 음식물류폐기물 등이 순차적으로 해양배출이 금지되어 앞으로 이들 폐기물의 육상처리가 불가피해진 상황에 처해 있다. 이러한 이유로 정부에서는 “음식물류폐기물 처리시설 발생폐수 육상처리 및 에너지화 종합대책(2008~2012)”을 마련하여 추진하고 있으나 현재까지 실증설비가 없어 업체와 정부가 확실한 공법과 수행 가능한 사업비 예측에 어려움을 겪고 있다. 또한 외국의 사례를 바탕으로 음식물류폐기물을 고형폐기물로 혐기성 소화 처리하는 방법을 도입하여 국내에 적용하고 있지만 음식물류폐기물 성상이 상이하여 부적절한 전처리, 혐기성 소화에 대한 이해 부족, 유기물부하, 낮은 메탄회수율, 소화조 운영 경험미숙 등의 기술적 한계로 인한 운영상 어려움을 격고 있는 실정이다. 따라서 해양배출 금지라는 측면과 더불어 기술・경제적인 측면에서도 음폐수를 바이오가스로 전환․자원화하기 위한 혐기성 공정의 개발이 시급한 상태이다. 본 연구에서는 “고순환형 고온 혐기성 소화공정(N-HTAD, High circulating type Thermophilic Anaerobic Digestion System)” 이라 불리우는 고농도 유기성 음폐수의 처리공정을 개발하였으며, 공정구성은 음폐수 유입 → 음폐수집수조 → 음폐수집진기 → 산생성조 → 메탄생성조 → 가압부상조 → 연계처리조 → 방류의 순서로 이루어져 있다. 또한 본 연구에서는 실증시설(음폐수 처리 설계용량 258.4㎥/일)의 실험을 통해 N-HTAD System의 음폐수 처리특성 및 효율을 평가하였으며, 그 결과는 다음과 같다. 1. 음폐수 일일 평균 투입수량은 261.8㎥였고, 이에 따른 VS 평균 부하량은 11,906kgVS/일, VS 평균 제거율은 86.6%로써 이때 바이오가스 생산효율은 1.15㎥/kg투입VS와 1.18㎥/kg제거VS로 나타났다. 2. 본 처리공정에서는 33.6~63.4㎥/㎥음폐수(평균 50.4㎥/㎥음폐수, 표준편차 6.3㎥/㎥음폐수)의 범위로 바이오가스가 발생되었고, 메탄(CH4)함량은 64.1~69.6%(평균 66.9%, 표준편차 1.4%)로서 시스템이 매우 안정적으로 운전되고 있음을 보여주었다. 3. 약 12개월의 실증실험 기간 동안에 산생성조와 메탄생성조의 pH는 각각 5.0~5.8 및 7.2~7.7이고 온도는 각각 55±2℃및 54±2℃로써 자동계측․제어장치를 통해 이들 운전인자들의 안정성을 높일 수 있었다.
19.
2015.11 서비스 종료(열람 제한)
유기성폐기물을 처리하는 소화조에서 발생하는 바이오가스는 다양한 에너지원으로 사용되고 있다, 최근에는 바이오가스를 보다 더 효율적인 에너지원으로 사용하기 위하여 정제를 통해서 도시가스화하고 있다. 바이오가스를 도시가스로 사용하기 위해서는 다양한 바이오가스 정제기술이 적용되고 있는데, 본 연구에서는 바이오가스 정제기술 중 메탄회수율과 정제된 바이오가스인 바이오메탄의 메탄농도가 높고, 에너지 원단위가 낮은 아민흡수기술을 적용하여 바이오가스를 정제해 도시가스로 사용하기 위한 연구를 수행하였다. 본 연구결과 아민흡수기술을 통해 도시가스 품질 기준에 적합하게 바이오가스를 정제하여 도시가스 배관망에 주입하였고, 이때의 바이오가스 정제기술인 아민흡수기술의 메탄회수율은 97% 이상, 바이오메탄의 메탄농도는 97% 이상이었고, 에너지 원단위는 2.0kW/Nm³ 이하로서 다른 바이오가스 정제기술에 비하여 낮은 에너지원단위를 나타내었다.
20.
2015.11 서비스 종료(열람 제한)
식물정화공법(Phytoremediation)은 오염부지의 정화에 있어 생태계를 교란하지 않는 경제적인 정화 수단으로서 많은 관심을 받고 있다. 공법의 특성상 오염물질을 포함하는 부산물이 필연적으로 발생되며 이에 대한 적절한 처리방법이 반드시 수반되어야 한다. 일반적으로 식물체부산물은 식물 종에 따라 구성이 다양하지만 헤미셀룰로오스, 셀룰로오스, 리그닌 등의 식물섬유소와 회분으로 구성되어 있어 혐기성 조건에서 소화시킬 경우 바이오가스 형태의 에너지를 회수할 수 있을 뿐만 아니라 처분을 필요로 하는 부산물의 양을 감소시킬 수 있다. 그러나 혐기소화 시 중금속의 존재는 혐기성 미생물의 대사와 활동에 영향을 줄 수 있어 중금속을 함유하는 식물체부산물의 처리에는 주의가 필요하다. 본 연구에서는 중금속 오염부지에서 수확된 해바라기 부산물의 적절한 처리방법으로서 혐기소화를 제안하고, 실험실 규모의 연속식 반응조 운전을 통해 중금속을 함유하는 식물체부산물의 혐기소화에 따른 중금속의 영향과 적용 가능성을 평가하였다. 실험에는 단상 혐기성 반응조(총 부피/유효부피 = 8/5 L)를 사용하였으며, 반응조는 약 500일간 35±1℃로 유지되는 암조건의 항온실에서 운전되었다. 기질은 1일 1회 주사기를 이용하여 회분식으로 주입하였으며, 반응조 내 유효부피를 일정하게 유지하기 위하여 주입되는 기질의 부피와 동일한 양의 슬러지를 채취하여 분석을 실시하였다. 식물체부산물 내에 포함된 중금속이 혐기소화에 미치는 영향을 확인하기 위한 평가 지표는 반응조 액상 내 중금속 농도의 변화와 바이오가스 발생량 및 바이오가스 내 메탄함량을 관찰하였다. 반응조의 안정적인 운전 여부는 pH, COD, 암모니아, 알칼리도 그리고 지방산 농도의 변화를 통하여 확인하였다. 반응조 운전 기간에 걸쳐 반응조 액상 내 중금속 농도는 기존의 문헌에서 제시하고 있는 저해 수준 이하였으며, 바이오가스 발생량과 바이오가스 내 평균 메탄가스 함량은 각각 0.57±0.21 L/day (n=541), 50.64±3.72% (n=541)로 메탄가스 생산이 안정적으로 이루어 졌음을 보였다. 또한 반응조의 안정적인 운전 여부를 확인하기 위한 지표들이 운전기간 동안 문헌에서 제시하고 있는 안정적인 범위로 유지된 것을 관찰하였다. 연구결과 식물체부산물 내 중금속은 혐기성 미생물의 활동에 직간접적인 영향을 미치지 않은 것을 확인하였으며, 결국 중금속 오염부지의 식물정화공법 이후 발생된 해바라기 부산물은 혐기소화를 통한 처리와 바이오가스 생산이 가능할 것으로 판단된다.
1 2 3 4 5