식품공전 시험법은 식품기초규격 적부 판정, 수거검사의 적부판정, 수입식품의 적부판정 등의 판단근거가 되기 때문 에 식품산업에서 매우 중요하다. 본 연구는 도시락, 밀키트, 된장에 오염된 일반세균, 대장균군, 효모, 곰팡이, 대장균을 분리하기 방법으로 사용되는 평판배지법, Petrifilm법, Compact Dry법을 이용해 각각의 세균을 분리하였고, 회수율을 비교 하였다. 식품 내 자연균총(일반세균, 효모/곰팡이, 대장균군) 검출은 평판배지 PCA, PDA, DCLA와 Petrifilm AC, YM, CC의 성능을 Compact Dry TC, YMR, CF와 비교하였다. 인 위접종한 대장균(E. coli)의 경우는 평판배지 EMB, Petrilfilm EC, Compact Dry EC의 검출능을 비교하였다. 본 실험결과, 일반세균, 대장균군, 대장균의 검출에서 Compact Dry법은 기 존의 평판배지법 및 건조배지법과 비교하여 식품 내 각각의 세균수를 계수하는데 유의적 차이를 보이지 않았다(P>0.05). 또한, 평판배지법과 Compact Dry간의 상관관계 및 Petrifilm 과 Compact Dry간의 상관관계 역시 1에 가까운 높은 값을 확인하였다. Compact Dry법은 미생물 분석을 위해 배지 준 비 과정이 필요 없으며, 접종 후 자체 확산이 가능하여 사 용하기 쉽고, 공간을 효율적으로 사용할 수 있으므로 기존 의 배지를 사용하는 방법에 비해 많은 장점을 제공하였다. 따라서 식품 중 일반세균, 대장균군, 대장균의 검출을 위한 Compact Dry법(Compact Dry TC, CF, EC)은 기존의 식품공 전 상 등재된 다른 건조필름법을 대체 가능한 것으로 판단된다.
In Korea, from January 2023, the Act on Labeling and Advertising of Food was revised to reflect the use-by-date rather than the sell-by-date. Hence, the purpose of this study was to establish a system for calculating the safety factor and determining the recommended use-by-date for each food type, thereby providing a scientific basis for the recommended use-by-date labels. A safety factor calculation technique based on scientific principles was designed through literature review and simulation, and opinions were collected by conducting surveys and discussions including industry and academia, among others. The main considerations in this study were pH, Aw, sterilization, preservatives, packaging for storage improvement, storage temperature, and other external factors. A safety factor of 0.97 was exceptionally applied for frozen products and 1.0 for sterilized products. In addition, a between-sample error value of 0.08 was applied to factors related to product and experimental design. This study suggests that clearly providing a safe use-by-date will help reduce food waste and contribute to carbon neutrality.
To manage, sort, and grade fishery resources, it is necessary to measure their morphometric characteristics. This labor-intensive task involves performing repetitive operations on land and on a research vessel. To reduce the amount of labor required, a vision-based automatic measurement system (VAMS) for the measurement of morphometric characteristics of flatfish, such as total length (TL), body width (BW), and body height (BH), has been developed as part of a database management system for fishery resources management. This system can also measure the mass (M) of flatfish. In the present study, we describe a morphological image processing algorithm for the measurement of certain characteristics of flatfish. This algorithm, which involves preprocessing, edge pattern matching, and edge point detection, is effective in cases where the flatfish being measured has a deformed tail and is randomly oriented. The satisfactory performance of the proposed algorithm is also demonstrated by means of experiments involving the measurement of the BW, TL and BH of a flatfish when it is straightened (BW : 117mm, TL : 329mm, BH : 24.5mm), when its tail is deformed, and when it is randomly oriented.
본 연구에서는 은행과 기업과의 밀접도 즉 대출 및 주식소유 등을 통한 관계가 기업의 경영성과와 어떠한 관련이 있는지에 대해 은행이 경영참여에 나섰던 일본과 그렇지 않았던 한국의 경우를 비교하여 실증분석하였다. 특히 기존연구와는 달리 한국의 재벌 및 일본의 기업집단과 은행과의 밀접도와 이들 재벌 및 기업집단의 경영성과의 관계에 대한 분석이 행하여 졌다. 실증분석의 결과는, 한국과 일본 모두에서, 은행차입금비율이 높을수록 기업의 경영성과는 낮았으며, 이는 은행중심의 기업지배구조하에서 채권자로서의 은행의 역기능이 순기능보다 크다는 사실을 시사하고 있다. 또한 한국의 경우, 은행주식소유지분이 높을수록 기업의 경영성과가 높아졌는데 이는 은행이 자사 포트포리오투자의 일환으로 수익성 높은 기업에 투자하는 점을 보여준다고 생각할 수 있을 것이다. 일본의 경우는 은행주식소유지분이 높을수록 기업의 경영성과가 낮아지는데 이는 은행의 강력한 독점력이 기업수익성의 약화라는 비용을 수반할 수도 있다는 가능성을 시사하고 있는 것이다. 또한 한국의 5대 재벌기업과 일본의 기업집단(keiratsu) 소속기업에 대한 은행과의 밀접성과 경영성과의 관련에 대한 실증분석결과 또한 흥미롭다. 분석 결과는 한국의 5대 재벌기업의 경우 은행차입금비율이 높아짐에 따라 또 은행의 주식소유지분이 높을수록 비재벌 기업에 비해 오히려 수익성이 상대적으로 더 낮아진다는 것을 보여주고 있는데 이는 우리나라 은행들과 재벌기업간에는 정보의 비대칭성과 높은 거래비용이 존재한다는 것을 의미한다고 볼 수 있으며 또 우리나라 은행이 단순 포트폴리오 투자차원이상의 어떠한 이유로 이들 기업의 주식을 보유하고 있다는 점을 시사한다. 일본의 기업집단(keiratsu) 소속기업인 경우, 은행차입금비율이 높아짐에 따라 또 금융기관 소유지분이 높아짐에 따라, 즉 은행과 밀접한 관련을 가짐에 따라 경영성과가 높아진다는 것을 의미한다. 이는 기업집단소속 기업의 경우에는 은행의 강력한 독점력이 오히려 기업수익성에 도움을 줄 수도 있다는 가능성을 보여주고 있다. 이러한 사실은 기업집단소속 기업의 경우엔 기업집단소속 은행과의 밀접한 관계가 정보의 비대칭성과 거래비용을 줄여주고 경영의 효율성을 높여준다는 것을 시사한다.
This study measured the energy recovery rate of each municipal waste incineration facility according to the revised energy recovery rate estimation method, which targeted four municipal waste incineration facilities (Unit No. 7). The results calculated by the measuring instruments were used for each factor to estimate the recovery rate, and the available potential of available energy was examined by analyzing the energy production and valid consumption. As a result of the low heating value, 2,540 kcal/kg was calculated on average when the LHVw formula was applied, which is approximately 116 kcal/kg higher than the average design standard of 2,424 kcal/kg. The energy recovery rate was calculated as 96.9% on average based on production and 67.5% based on effective consumption, and the analysis shows that approximately 29.4% energy can be used.
Domestic automotive shredder residue (ASR) recycling facilities must comply with 60% of the energy recovery criteria calculated by the waste control act, based on resource circulation of electrical and electronic equipment and vehicles. The method of calculating energy recovery criteria was newly enacted on November 6, 2017, and it has been judged that it is necessary to consider applicability. In this study, the energy recovery efficiency of 7 units was calculated by past and present calculation methods. Furthermore, this study attempts to find applicability and a method of increasing the energy recovery efficiency by taking advantage of available potentials. An analysis of the calculation results showed that the average values calculated by past methods, present methods, and the method that includes available potentials are 76.35%, 70.68%, and 78.24%, respectively. Therefore, the new calculation method for energy recovery efficiency is also applicable to domestic automotive shredder residue recycling facilities.
The quality standards of solid refuse fuel (SRF) define the values for 12 physico-chemical properties, including moisture, lower heating value, and metal compounds, according to Article 20 of the Enforcement Rules of the Act on Resource Saving and Recycling Promotion. These parameters are evaluated via various SRF Quality Test Methods, but problems related to the heavy metal content have been observed in the microwave acid digestion method. Therefore, these methods and their applicability need improvement. In this study, the appropriate testing conditions were derived by varying the parameters of microwave acid digestion, such as microwave power and pre-treatment time. The pre-treatment of SRF as a function of the microwave power revealed an incomplete decomposition of the sample at 600 W, and the heavy metal content analysis was difficult to perform under 9 mL of nitric acid and 3 mL of hydrochloric acid. The experiments with the reference materials under nitric acid at 600 W lasted 30 minutes, and 1,000 W for 20 or 30 minutes were considered optimal conditions. The results confirmed that a mixture of SRF and an acid would take about 20 minutes to reach 180 oC, requiring at least 30 minutes of pre-treatment. The accuracy was within 30% of the standard deviation, with a precision of 70 ~ 130% of the heavy metal recovery rate. By applying these conditions to SRF, the results for each condition were not significantly different and the heavy metal standards for As, Pb, Cd, and Cr were satisfied.
소각시설에서의 폐기물 저위발열량은 소각로의 연소성능 및 특성 파악 측면에서 핵심적 요소로 작용하는 인자이다. 기존 저위발열량 측정 방법은 시료 채취를 통하여 발열량계 측정, 원소분석법 등을 적용하도록 규정하였으며, 소량의 시료를 바탕으로 함에 따라 폐기물의 불균질성 등을 충분히 반영하지 못하여 결과의 객관성이 부족한 문제점을 야기하여 왔다. 이에 환경부는 저위발열량 산정 관련 지침의 개정을 통하여 산정방법의 객관화를 추진하였다. 그러나 개정된 지침의 생활폐기물 저위발열량 산정식은 일반・고온 소각시설에 적용되는 산정 방법이다. 현재 국내에는 17개소의 열분해(가스화)・고온용융 소각시설이 운영되고 있으며 투입 보조연료, 연소로 운전 온도, 잔재물 배출 특성 등 일반소각방식과 달리 열분해・용융 처리방식의 공정 특성을 반영한 산정식의 필요성이 제기되었다. 이에 본 연구에서는 국내 열분해・고온용융 소각시설에서의 열정산을 통하여 열분해・고온용융 처리방식의 특성이 반영된 저위발열량 산정방법의 산정계수와 최종 산정식을 도출하였다. 또한 도출된 산정식을 바탕으로 대상 시설에서의 투입 폐기물에 대한 저위발열량을 산정・평가하였다. 입・출열 특성 분석결과 출열에너지 중 증기 흡수열이 약 77.1%로 가장 많은 비율을 차지하였으며, 배출가스 보유열은 약 15.3%, 그 밖의 기타 출열에너지는 약 7.6% 수준으로 나타났다. 이러한 열정산 결과를 바탕으로 저위발열량 산정식의 상수값과 최종 산정식을 도출하였으며, 미연 및 방열손실 계수(α)는 1.098, 부가 입열량 계수(β)는 1.189, 배출가스 열손실 계수(γ)는 0.002의 상수값을 도출하였다. 아울러 도출된 열분해・고온용융 시설 LHVw 산정식을 적용을 적용한 저위발열량 산정 결과 11개호기 평균 약 2,160.8 kcal/kg 수준으로 나타났다. 산정식 도출결과는 현재 운영 중인 시설에서의 실측데이터를 적용한 결과로, 국내 열분해・용융 시설에 적용가능한 객관적이고 정형화된 저위발열량 산정방법일 것으로 사료된다. 또한 본 연구의 결과는 향후 저위발열량 산정방법 개정 등을 위한 소각시설에서의 주요 모니터링 인자 도출 및 관리방안 마련을 위한 기초자료로 활용될 수 있을 것으로 판단된다.
폐기물에너지는 폐기물을 변환시켜 연료 및 에너지를 생산하는 기술이며 고형연료제품이 이에 해당한다. 고형연료제품은 가연성 생활폐기물, 폐플라스틱, 폐타이어, 폐목재 등의 고체폐기물을 파쇄, 분리, 건조, 성형 등의 공정을 거쳐 제조한다. 고형연료제품 사용은 폐기물 발생을 최소화할 수 있고 폐기물 중 가용 자원의 재활용을 극대화 할 수 있는 장점이 있다. 하지만 고형연료제품은 소각을 통해 열에너지를 회수하므로 그 과정에서 오염물질이 발생하는 단점이 있다. 따라서 오염물질 발생을 줄이기 위해 고형연료제품의 품질기준에 적합한 제품을 사용해야 할 것이다. 고형연료제품의 품질기준 시험은 환경부고시 제 2014-135호 고형연료제품 품질 시험․분석방법을 기준으로 수행한다. 따라서 품질기준 적합성 여부를 판단하기 위해서는 고형연료제품 품질시험방법의 정확성이 요구된다. 하지만 현행 고형연료제품 품질시험방법은 국외 고형연료제품 품질시험방법과 폐기물공정시험기준을 참고하여 번역․제정하였고, 그 과정에서 국내 실정에 맞지 않거나 용어, 문장의 오류가 다수 발견되었다. 그러므로 현행 시험방법을 개선하고 오류를 수정하여 고형연료제품 품질시험방법을 개정해야 할 필요가 있다. 본 연구에서는 품질시험방법의 개정을 위해 고형연료제품 품질표시 시험기관의 의견을 수렴하였고 개정의견의 타당성은 전문가 회의, 적용성 시험을 통해 검토하였다. 적용성 시험은 고형연료제품 시료 운반 온도에 따른 성분 변화 분석, 회분시험 시료량의 변화에 따른 회분함량 분석, 마이크로파 전력 및 반응시간에 따른 고형 연료제품의 중금속 함량 변화 분석을 수행하였다.
In the past, the role of incineration facilities was mainly to reduce waste and stabilize disposed material. However, as a key aspect of waste management policy, the concept of “waste Minimization and sustainable resource circulation society” has become an issue, and the effective use of waste has been emphasized. As a result, to promote the recycling of wastes from January 1, 2018, the Framework Act on Resource Circulation has been implemented. In this study, estimation factors that can affect the increase of energy recovery are selected by reviewing the estimation method of industrial waste incineration facilities having a separate boiler; moreover, the effect of calculation factors on energy recovery was quantitatively evaluated. According to this study, when the heat loss, condensate temperature, and power consumption decrease by 10%, the energy recovery of the target facilities increase by 0.4% (0.22 ~ 0.63%), 1.09% (0.57 ~ 1.32%), and 1.16% (0.52 ~ 2.13%) on an average.
Recently, the concept of “sustainable resource circulation society” has become a global issue and a key part of waste management policy. For resource circulation, Korea has established the primary foundation via the enactment of the “Framework act on resource circulation.” Waste energy recovery is attracting considerable attention because of such policy changes, and efforts are being made to maximize the use of heat at incineration facilities. Moreover, to ensure the objectivity and validity of the estimation method’s results, the ministry of environment has recently revised the guidelines for the energy recovery rate estimation method and lower heating value (LHV) of waste at incineration facilities. In the revised guidelines, for estimating the LHV of waste, a formal formula is presented at general incineration facilities for municipal solid waste (MSW). However, generally, the LHV-formula at incineration facilities is difficult to apply to pyrolysis-melting facilities because it does not reflect characteristics of the pyrolysis-melting treatment method. Thus, in this study, the actual condition of pyrolysis-melting facilities was investigated, and the LHV-formula for pyrolysis-melting facilities was derived using the derivation method of the EU’s NCV-formula.
수제는 일반적으로 하천에서의 흐름 방향과 유속을 제어하여 하안 또는 제방을 유수에 의한 침식작용으로부터 보호하기 위한 목적으로 설치될 뿐만 아니라 과거에는 운하를 위한 충분한 수심 확보 목적으로 이용되었다. 2000년대 이후 하천복원 및 자연하천 정비에 대한 관심이 커지면서, 수제 설치로 인해 발생되는 수제주변 국부적인 흐름제어와 다양한 하상조건이 수중서식처 기능을 줄 수 있어 환경적 주요 수공구조물로 제시되고 있다. 수제는 주로 여러 개의 군수제로 설치되는데 설치간격에 따라 주수로에서 변화되는 흐름과 수제역내 흐름이 다양하게 발생하기 때문에 군수제 설계에 있어서 수제의 간격은 중요한 설계인자라 할 수 있다. 본 연구는 수제간격 및 설치각도에 따라 다양하게 변화되는 수제역내 재순환구간의 흐름현상을 검토하여 수제목적에 따른 적정 수제간격을 결정하는데 정보를 제공하고자 하였다. 특히 흐름분석은 수제역내 재순환영역에서 발생하는 와의 형성, 와 중심점의 위치 및 제방부 유속을 주로 분석하여 제방부의 안정성에 영향을 미치는 제방주변에서의 흐름특성을 검토하였다. 실험의 결과는 군수제 설치에 따른 수제역 내의 하상변화와 제방안정성 검토를 위한 중요한 기초자료가 될 것이다.
Insulation materials used for building save energy and can be classified into inorganic and organic materials. Organic insulation emits toxic gases in a fire and has lower water resistance. Inorganic insulation is heavy and has poorer thermal performance than that of organic material. This study evaluated the physical properties and fire resistance of lightweight inorganic insulation foaming material made of waste glass powder. The test results showed that the inorganic material performed well with low density and low thermal conductivity for an insulation material. Foam insulation material manufactured from glass powder was sufficient as a fire-resistant product.
우리나라는 자원이 부족하여 총 공급에너지의 95.8 %를 수입에 의존하고 있어 신재생에너지의 개발과 합리적인 이용방안이 절실하다. 폐기물 에너지는 재생에너지 종류 중 하나로 가정이나 사업장에서 배출되는 폐기물을 열분해를 통해 고형연료, 폐유 정제유, 플라스틱 열분해 연료유, 폐기물 소각열 등의 에너지를 생산할 수 있어 활용가치가 매우 높다. 그 중 고형연료는 「자원의 절약과 재활용촉진에 관한 법률」에 따라 인정된 생활폐기물(음식물류 제외), 폐합성수지, 폐지 등 가연성물질만을 선별・분리하여 제조한 연료로 현재 SRF(Solid Refuse Fuels) 와 BioSRF(Biomass Solid Refuse fuel)로 관리되고 있다. 폐기물 연료는 화석연료뿐만 아니라 바이오매스도 포함하고 있기 때문에 부분적인 이산화탄소 중립연료로 간주될 수 있다. 특히 혼합된 폐기물연료를 소각하는 곳에서 배출되는 가스 중에는 바이오매스 기원물질을 제외 할 때에 비로소 순 온실가스 배출량을 산정할 수 있다. 따라서 본 연구에서는 폐기물에너지 중 가연성폐기물을 원료로 한 고형연료제품 종류별 사용시설에서 배출되는 가스를 포집하여 CO2 중의 생물학적 기원물질의 바이오매스를 14C 방법으로 분석하였다. 또한 고형연료에 대한 분석을 SDM(Selective Dissolution Method)방법과 14C 방법으로 분석하여 비교하였고 배출가스에서의 측정․분석을 수행함으로서 폐기물에너지 사용시설에 적용 가능한 가장 적합한 측정․분석방법을 고찰해보았다.
국내 폐기물 발생량은 급격한 산업화와 인구 증가 등의 요인으로 인해 꾸준히 증가하고 있으며 이에 따라 다양한 폐기물 처리방법이 수행되고 있다. 폐기물 처리방법 중 하나인 고형연료제품 제작은 폐기물 발생을 최소화할 수 있고 폐기물 중 가용 자원의 재활용을 극대화 할 수 있기 때문에 신재생에너지로 간주되고 있다. 고형연료는 고체폐기물 중 폐합성수지류, 폐지류, 폐목재류 등 가연성 물질을 선별하여 파쇄, 건조 등의 처리과정을 거쳐 연료화시킨 것을 통칭하며 소각시설이나 발전시설에서 연료로 사용되고 있다. 하지만 최근 미세먼지 문제가 심각해지면서 고형연료에 대한 부정적 인식이 늘고 있으며 이를 극복하기 위해서는 고형연료가 안전한 제품으로 인식될 수 있도록 다수의 품질기준 적합성 검사가 필요하다. 고형연료 품질기준 중 중금속 함량 분석은 이러한 인식 제고에 반드시 필요한 시험 항목이기 때문에 정확성이 확보되어야 하며 현재 고형연료 품질시험방법에 따른 중금속 분석방법은 전처리 과정에서 고형연료 시료가 완전히 분해되지 않는 문제점이 발견되었다. 본 연구에서는 기존 고형연료의 중금속 함량 분석 방법을 개선하기 위해 마이크로파 전처리 조건의 산 종류, 마이크로파 전력(W), 반응시간에 변화를 주어 이에 따른 17종의 중금속(As, Cd, Pd, Ca, Co, Cr, Cu, Fe, Li, Mg, Mn, Ni, Sb, Sr, Ti, V, Zn)함량 변화를 확인하였다. 대상 시료는 인증표준물질 ERM-EC680k를 사용하였고 마이크로파 전처리를 통해 제조된 액상시료는 유도결합플라즈마 분광분석기(ICP-OES)를 통해 분석하였다.
국내 폐기물 소각시설의 에너지 회수효율 관련 규정으로는 「폐기물관리법 시행규칙」 제3조(에너지 회수 기준 등)에 명시되어 있으며, 에너지 회수효율 기준으로는 75 % 이상(생산량 기준) 회수된 열에너지를 스스로 이용하거나 다른 사람에게 공급할 것으로 규정하고 있다. 또한, 2016년 5월 제정된 「자원순환기본법」 내 제21조에서는 폐기물을 순환이용할 수 있음에도 불구하고 소각・매립방법으로 처분하는 경우 폐기물처분부담금을 부과하도록 명시하였으며, 동법 제24조에 따르면 소각열에너지를 50 % 이상 회수하여 이용하는 경우 폐기물처분부담금을 감면할 수 있도록 규정하고 있다. 그러나 현행 에너지 회수효율 기준은 생산에너지를 기준으로 산정하고 있어 실제 유효하게 이용된 에너지의 평가가 곤란하며, 에너지원으로는 전력에너지가 반영되지 못하여 에너지 회수효율 증진을 위한 유인방안이 부족한 실정이다. 국내의 폐기물 소각시설의 저위발열량 산정방법으로는 원소분석법(Dulong, Steuer 등), 단열 열량계(Bomb Calorimeter)를 이용하여 측정・분석하고 있으나 소량의 시료 채취를 통하여 폐기물의 대표성을 확보하기에는 많은 어려움이 따른다. 또한, 소각로에 투입되는 폐기물의 특성(성상의 다양성, 계절적 영향 등) 및 시설의 특성 등을 반영하지 못하고 있는 실정이다. 이에 본 연구에서는 지역적 특성 및 소각로・보일러의 형태(stoker, Rotary Kiln, FBC )등을 고려하여 현재 운영 중인 폐기물 소각시설(생활, 사업장) 11개소(17호기)를 대상시설로 선정하여 계측기 측정데이터 및 현장측정(배출가스 조성, 바닥재 배출온도 및 강열감량, 소각로 및 보일러 방열손실)을 통하여 해당 시설의 저위발열량 및 에너지 회수효율을 산정하였다. 이와 같은 산정결과를 바탕으로 향후 에너지 회수효율 향상 제고를 위한 기초자료로 활용하고자 한다.
신기후체제에 대한 이행체계 구축을 위해 부문별 온실가스 감축 강화에서 폐자원에너지가 기여하는 역할에 대해 조명 받고 있다. 그 이유는 폐자원에너지가 다른 재생에너지 대비 비용 효율적이고 지역에너지로서 기능과 분산형 발전이 가능하다는 점이다. 뿐만 아니라 지속가능한 개발을 위해 추진 중인 EU의 자원효율 정책과 그 전략으로 전개되는 순환경제에서도 폐자원에너지가 물질재활용과 함께 중요하게 다뤄지고 있는 점을 고려한다면 앞으로 폐자원에너지를 보다 활성화하기 위한 시책(施策) 마련이 필요하다. 2018년부터 시행예정인 자원순환기본법에서 매립이나 소각시 폐기물처분부담금을 부과하도록 한 점은 제도적으로 폐자원에너지를 회수하고 유효 이용하도록 하는 유인책으로 역할을 담당하는 것은 자명하다. 그러나 제도적으로 부과금을 부과한다고 하여 폐자원에너지를 활성화하기에는 한계점이 있다. 이 같은 배경을 토대로 본 연구는 기후변화와 자원순환사회 구축에 선도적으로 대응해 온 EU나 일본의 사례를 살펴봄으로써 부과금 제도의 후속 조치로 폐자원에너지 활성화 요소 및 방안을 위한 토대를 마련하고자 한다. EU는 28개 회원국으로 구성되어 있기에 주로 유럽집행위원회(EC)에서 폐자원에너지를 회수하도록 하는 전략을 기후・에너지패키지 및 순환경제패키지 등을 연계하여 수립하고 있다. 일본은 폐자원에너지를 보다 많이 회수할 수 있도록 에너지 회수효율을 국고보조금 제도와 연계하여 집행하고 있는 점이 특징이다. 결론적으로 EU와 일본을 대상으로 폐자원에너지를 회수하고 유효 이용하도록 하는 정책적 활성화 방안을 살펴본 결과, 국내도 폐자원에너지를 활성화하기 위해서는 부과금 제도 이외에 다양한 시책을 마련할 필요가 있음을 확인하였다.
IEA의 에너지 전망 시나리오에 따르면 세계의 에너지 수요는 점차 증가할 것으로 나타나고 있다. 이에 따라 세계적으로 에너지 수요 증가에 따른 이산화탄소 배출량 증가를 제한하기 위한 에너지와 기후 정책이 시행 되고 있다. 파리협정은 2020년 만료 예정인 교토의정서를 대체하기 위해 2015년 채택 된 신기후체제로, 적극적인 온실가스 감축을 목표로 한다. 이에, 유럽에서는 이미 폐기물을 이용한 재생연료의 바이오매스 함량을 측정하여 이를 온실가스 배출량에서 차감하는 정책을 수행하고 있다. 국내에서도 신재생에너지를 사용하여 온실가스를 감축하기 위한 정책이 시행 중이다. 산업통상자원부의 제4차 신재생에너지 기본계획에 따르면, ‘35년까지 1차 에너지의 11.0%를 신재생에너지로 공급하여 전체 전력량의 13.4%를 신재생에너지로 공급하는 것이 목표이다. 신재생에너지로서 폐기물에너지의 정책 목표 비중은 14년 67%에서 25년 38.8%, 35년 29.2%로 점차 줄어들지만, 신재생에너지의 전체 공급 목표량이 증가하므로 폐기물에너지의 연평균 증가율은 2%를 목표로 하고 있다. 2016년 신재생에너지 백서에 따르면 폐기물에너지의 이론적 잠재량은 2013년 기준 13,977,173 toe/yr 에 이른다. 따라서 본 연구에서는 국내외의 신재생에너지로서 폐기물에너지의 가치를 평가하고 효과적인 활용을 위한 정책 개선 방향에 대하여 검토하였다.
2016년 11월 4일 신기후체제인 파리협약이 발효되었다. 국내도 자체적으로 온실가스 감축을 위한 노력을 기울여 왔으나 2020년 이후 국제협약에 의해 감축을 이행한다는 점을 고려하면 구체적이고 신뢰성 있는 방안 마련이 필요하다. 산업이나 발전부문 이외에 폐기물부문도 감축을 위한 방안 마련이 필요하다. 제1차 기후변화대응 기본계획에 폐기물부문은 발생억제와 재활용 그리고 에너지화에 의한 감축 방안이 담겨있다. 그러나 실질적으로 어느 정도의 감축효과가 있는지 그리고 신뢰성이 있는지에 대해서는 객관적으로 검증한 바 없다. 이러한 점에서 앞서 교토의정서에 의해 온실가스 감축을 체계적으로 감축해 온 EU의 폐자원에너지가 온실가스 감축에 기여하는 정도와 역할에 대해 살펴보고자 한다. 앞으로 폐기물부문의 온실가스 감축 방안을 보다 신뢰성이 있는 방향으로 전개하기 위해서는 선도적으로 대응해 온 국가의 대응 방안을 살펴보는 것도 의미가 있기 때문이다. 한편 EU는 지속가능한 발전을 위해 자원효율(Resource Efficiency) 정책을 펼치고 있다. 그 동력원으로 순환경제를 추진하고 있는데 시책으로 2015년 12월 순환경제패키지를 책정하였다. 순환경제는 EU의 경제 성장을 유지하면서도 자원이용으로 인한 환경영향은 증가시키지 않기 위한 디커플링(Decoupling) 실현을 목표로 하고 있다. 순환경제에서 폐기물을 2차원료나 물질로 우선적으로 이용하고 재활용이 가능하지 않은 폐기물에 대해서는 최대한 에너지로 회수하기 위한 시책도 함께 이뤄지고 있다. 기후변화 대응과 순환경제로의 이행을 위한 폐자원에너지의 역할을 EU 중심으로 살펴본 결과, 국내도 기후변화 대응과 순환경제 사회를 구축하기 위해서는 폐기물관리 정책부문에서 폐자원에너지에 대한 역할을 조명하고 폐자원에너지 산업을 활성화하기 위한 방안마련이 필요함을 확인하였다.