검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13

        1.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Almost all of the water from agricultural dams located to the upper of the Yeongsan river is supplied as irrigation water for farmland and thus is not discharged to the main stream of the river. Also, most of the irrigation water does not return to the river after use, adding to the lack of flow in the main stream. As a result, the water quality and aquatic health of the river have become the poorest among the four major rivers in Korea. Therefore, in this study, several strategies for water quality improvement of the river were developed considering pollution reduction and flow rate increase, and their effect analysis was performed using a water quality model. The results of this study showed that the target water quality of the Yeongsan river could be achieved if flow increase strategies (FISs) are intensively pursued in parallel with pollution reduction. The reason is because the water quality of the river has been steadily improved through pollution reduction but this method is now nearing the limit. In addition, rainfall-related FISs such as dam construction and water distribution adjustment may be less effective or lost if a megadrought continues due to climate change and then rainfall does not occur for a long time. Therefore, in the future, if the application conditions for the FISs are similar, the seawater desalination facility, which is independent of rainfall, should be considered as the priority installation target among the FISs. The reason is that seawater desalination facilities can replace the water supply function of dams, which are difficult to newly build in Korea, and can be useful as a climate change adaptation facility by preventing water-related disasters in the event of a long-term megadrought.
        4,000원
        2.
        2012.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, non-point pollution sources in the Yeongsan river basin are analyzed; then, the priority regions (areas divided on a small scale) of management are selected for efficient water management of the Seungcheon and Jooksan reservoirs, which were constructed as one of the 4 major rivers restoration projects. The priority regions are decided by using the criteria of the excessive rate of target water quality, non-point pollution load per unit area, total TP load and down flow distance. The results of this study are as follows. The upper 10% of the priority regions for non-point pollution management includes YB15, YB05, YB10, YB24, YB14 and YB11 for the Seungcheon reservoir watershed, and YC24, YC25, YC30, YC34, YC22 and YC17 for the Jooksan reservoir watershed. However, a few regions in each of the Seungcheon and Jooksan reservoirs need to be selected in higher order, and the non-point pollution removal facilities in the regions need to be installed with respect to budget, urgent matter, and so on.
        4,000원
        3.
        2009.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was carried out to investigate the characteristics of major odorous pollutants emitted from foodwaste treatment facilities for providing the basic information in field of prevention. Twelve odorous components were analyzed at unit processes in 3 plants on May, August and October. The major odorous components appeared to be Ammonia (559.42 ppb), Acetaldehyde (229.70 ppb), Methylmercaptan (50.39 ppb) and Hydrogen sulfide (48.90 ppb). In the view-point of COC (Calculated Odor Concentration) based on odor threshold, A plant showed the highest value. The major odor active facilities were prevention > input > afterripening > fermentation > boundary > pretreatment. The major odor active components were Hydrogen sulfide, Methylmercaptan, Acetaldehyde and i-valeraldehyde. It is important that the findings on major odor active facilities and components should be referred in the design of odor treatment process to the specific plants.
        4,200원
        6.
        2016.03 KCI 등재 서비스 종료(열람 제한)
        For material recovery of black carbon and pyrolysis oil, pyrolysis is considered as an alternative to combustion-based technologies for treatment of waste tire. This study investigated the heat transfer optimization in a pyrolysis reactor for waste tire chips with a capacity of 24 t/d. The reactor was required to have a larger heat transfer rate from hot gas to tire chips in the early stage of pyrolysis, whereas the rate in the later stage should be lower. This was to prevent thermal cracking of heavy compounds in the pyrolysis vapor and to improve the quality of black carbon. CFD was applied to analyze the flow and heat transfer in the complex geometry of the reactor for a total of nine design cases. It was found that modifications to control the distribution of gas flow rate along the reactor are more effective for the present reactor than adjusting the measures for heat transfer enhancement (such as fins). The ideal design improvement was to divide the reactor into two gas sections for a separate control of the flow rate, and to remove the fins of which its alignment perpendicular to the flow inhibits the hot gas from approaching the tube of tire chips.
        7.
        2015.11 서비스 종료(열람 제한)
        우리나라의 음식물류폐기물은 수분함량이 80~85% 정도로 높고 부패되기 쉬운 유기성 물질로서 수집과 운반과정에서 악취 및 침출수 유출로 인해 심각한 환경오염을 유발하고 있으며, 특히 음식물자원화 공정에서 고농도의 유기성 폐수(이하 “음폐수”라 함)가 다량 발생되고 있다. 현재 음식물자원화 공정에서 발생하는 음폐수는 공공수역 방류를 위해 자체처리 또는 하수처리장 등 환경기초시설과의 연계처리가 필요하나, 방류수 수질기준 준수부담으로 인해 음폐수를 자체처리한 후에 그 처리수를 하수처리장으로 연계 이송시켜 처리하는 방법이 육상처리법으로 주로 사용되고 있다. 하지만 처리비용 부담 및 처리시설 부족 등으로 육상처리보다 해양배출을 선호하고 있는 실정이다. 그러나 2013년부터 런던협약 󰡔‘96 의정서󰡕의 발효에 따라 해양배출의 제약사항이 강화되었고, 이에 따라 가축분뇨 및 하수오니, 음식물류폐기물 등이 순차적으로 해양배출이 금지되어 앞으로 이들 폐기물의 육상처리가 불가피해진 상황에 처해 있다. 이러한 이유로 정부에서는 “음식물류폐기물 처리시설 발생폐수 육상처리 및 에너지화 종합대책(2008~2012)”을 마련하여 추진하고 있으나 현재까지 실증설비가 없어 업체와 정부가 확실한 공법과 수행 가능한 사업비 예측에 어려움을 겪고 있다. 또한 외국의 사례를 바탕으로 음식물류폐기물을 고형폐기물로 혐기성 소화 처리하는 방법을 도입하여 국내에 적용하고 있지만 음식물류폐기물 성상이 상이하여 부적절한 전처리, 혐기성 소화에 대한 이해 부족, 유기물부하, 낮은 메탄회수율, 소화조 운영 경험미숙 등의 기술적 한계로 인한 운영상 어려움을 격고 있는 실정이다. 따라서 해양배출 금지라는 측면과 더불어 기술・경제적인 측면에서도 음폐수를 바이오가스로 전환․자원화하기 위한 혐기성 공정의 개발이 시급한 상태이다. 본 연구에서는 “고순환형 고온 혐기성 소화공정(N-HTAD, High circulating type Thermophilic Anaerobic Digestion System)” 이라 불리우는 고농도 유기성 음폐수의 처리공정을 개발하였으며, 공정구성은 음폐수 유입 → 음폐수집수조 → 음폐수집진기 → 산생성조 → 메탄생성조 → 가압부상조 → 연계처리조 → 방류의 순서로 이루어져 있다. 또한 본 연구에서는 실증시설(음폐수 처리 설계용량 258.4㎥/일)의 실험을 통해 N-HTAD System의 음폐수 처리특성 및 효율을 평가하였으며, 그 결과는 다음과 같다. 1. 음폐수 일일 평균 투입수량은 261.8㎥였고, 이에 따른 VS 평균 부하량은 11,906kgVS/일, VS 평균 제거율은 86.6%로써 이때 바이오가스 생산효율은 1.15㎥/kg투입VS와 1.18㎥/kg제거VS로 나타났다. 2. 본 처리공정에서는 33.6~63.4㎥/㎥음폐수(평균 50.4㎥/㎥음폐수, 표준편차 6.3㎥/㎥음폐수)의 범위로 바이오가스가 발생되었고, 메탄(CH4)함량은 64.1~69.6%(평균 66.9%, 표준편차 1.4%)로서 시스템이 매우 안정적으로 운전되고 있음을 보여주었다. 3. 약 12개월의 실증실험 기간 동안에 산생성조와 메탄생성조의 pH는 각각 5.0~5.8 및 7.2~7.7이고 온도는 각각 55±2℃및 54±2℃로써 자동계측․제어장치를 통해 이들 운전인자들의 안정성을 높일 수 있었다.
        8.
        2014.11 서비스 종료(열람 제한)
        바이오매스의 가스화 기술은 바이오매스를 합성가스로 변환하여 보일러, 엔진, 가스터빈 등에 직접적으로 활용하거나 화학적 변환을 통해 연료를 생산하는 등 에너지 밀도를 높이고 수송, 저장을 용이하게 할 수 있는 기술이다. 가스화 공정에서 바이오매스는 열분해 과정을 거치며 타르(다양한 종류의 탄화수소)와 가스가 생성된다. 이때, 타르는 약 350℃ 내외에서 응축되기 시작하며, 가스화기 등 각종 설비의 후단에 배관 막힘, 부식, 열전달 저하, 촉매 반응성 저하 등의 문제를 야기한다. 이러한 문제를 해결하기 위해 가스화기 내부에서 일차적으로 타르를 저감하는 방법에 대한 연구가 필요하다. 본 연구에서는 저속 열분해를 통해 생성된 타르의 특성에 대해 파악하였으며, 반응기 내부에서 가스의 체류시간 및 반응에 사용되는 촤(char)의 유/무 및 종류에 따른 타르의 분해 특성에 대해 분석하였다. 실험에 사용된 바이오매스 샘플은 전나무이며, 입자 크기는 1 cm³ 이고, 수분함량은 7.8%, 회분 함량 0.6%, 휘발분/고정탄소 비는 4.65으로 나타났다. 타르의 분해를 위해 사용된 촤는 미세 표면적, 기공분포, 밀도가 서로 다른 3 종류의 바이오매스(Paddy straw, PKS, 전나무)를 대상으로 열분해(800℃)를 통해 생산하였으며, 입자 크기를 0.5-1 mm 크기로 분류하여 실험하였다. 본 연구에서는 저속 열분해와 타르 분해 실험(열적 분해/촤 촉매반응)으로 나누어 실험을 진행하였다. 두 실험에 사용되는 반응기는 서로 직렬로 연결되어 있어 저속 열분해에서 생성된 열분해 증기(타르, 가스)가 타르 분해 반응기를 통과한다. 열분해는 고정층 반응기를 사용하여 최종 온도 500℃까지 약 10℃/min으로 승온 하였으며, 퍼지 가스는 질소(1.5 l/min)를 사용하였다. 타르 분해 반응기의 온도는 800℃로 유지하였고, 열분해 증기의 체류시간을 1, 3, 5초로 나누었고, 3종류의 촤를 사용해 타르의 전환 특성을 파악하였다. 저속 열분해의 생성물 수율은 촤 26.0%, 가스 22.8%, 수분/타르 51.2%로 나타났다. 열적 분해만 일어나는 경우 체류시간이 1-5 초로 증가할수록 수분/타르의 수율은 36.2-32.7%로 감소하였다. 반면, 고온 분위기에서 타르가 분해되어 가스로 변환되면서 가스의 수율은 38.0-42.1%로 증가하였다. 열적 분해에 비해 촤 촉매반응의 경우 수분/타르의 수율은 체류시간 1초에서 25.7-32.3%, 3초에서 17.8-23.4%, 5초에서 18.2-21.3%로 감소하였다. 3종류의 촤를 체류시간 3초에 대해 비교하면 수분/타르의 수율은 샘플별로 Paddy straw 23.4%, PKS 17.8%, 전나무 21.2%로 나타났다. 촤 촉매반응의 경우 고온에서 촤와 수분이 반응하여 CO, H2로 변환(C(s)+H2O⟶CO+H2)되어 수분/타르의 수율이 낮게 나타났다. 또한, 반응기 상단의 촤 입자 표면에 분자량이 큰 타르가 흡착되는 것으로 나타났다. 촤 종류에 따라 수분/타르의 수율의 차이는 각각 촤의 특성(미세표면적, 기공분포)에 따라 다양하게 나타났다. 결론적으로, 타르는 고온의 분위기에서 일차적으로 분해되며, 체류시작이 길고 촤를 사용할 때 농도가 낮아지며 타르의 저감 특성도 촤에 따라 변화하는 것을 확인하였다. 이 결과는 고정층 가스화기의 타르 저감을 위한 설계 개선에 활용될 수 있다.
        9.
        2014.11 서비스 종료(열람 제한)
        하・폐수 슬러지는 퇴비화, 소각, 해양투기, 매립, 건조 에너지화 등 다양한 방법을 통해 처리하였으나,해양배출 금지, 환경 문제 등으로 인해 처리상 어려움이 있다. 하・폐수 슬러지는 건조화 방식을 통해 고형연료로 변환이 가능하며, 이는 신재생에너지로 활용하여 열적 변환을 통해 에너지를 생산과 동시에 효율적으로 처리할 수 있다. 건조된 하・폐수 슬러지는 저위발열량 12-15 MJ/kg, 회분함량 20~30% 로써 열적 변환 방식에 따라 전・혼소용 연료로 충분한 활용이 가능하다. 따라서 본 연구에서는 건조/고형 슬러지를 대상으로 열중량분석, 열분해, 연소를 통해 연료 특성에 대해 파악하였다. 건조/고형화 슬러지는 산업폐수를 활용하여 열수 건조 후 성형된 고형 연료로써 수분은 5.73%로 나타났다. 회분의 함량은 36.27%, 가연분 함량(휘발분+고정탄소)는 58.0%, 저위발열량 14.28 MJ/kg 이다. 열중량분석은 약 10 mg의 미량의 샘플을 사용하여, 질소분위기에서 800℃까지 5-50℃/min으로 승온율에 따른 무게감소량 등 연료 특성에 대해 분석하였다. 전반적으로 약 100℃ 내외에서 수분이 증발되며, 250-520℃에서 열분해가 진행되는 것을 확인할 수 있었고, 승온율이 증가할수록 열분해 시 온도에 따른 무게감소량이 점점 감소하였다. 슬러지의 저속 열분해는 직경 100 mm, 높이 300 mm의 고정층 반응기를 통해 550℃까지 50℃/min 으로 승온하여 열분해 후 생성된 촤,타르와 합성가스의 양과 조성을 분석하였다. 열분해를 통해 생성된 Tar는 원소 조성을 파악하여 Tar내의 다양한 조성을 측정하였다. 생성된 가스는 연소실험과 동일한 방법을 통해 가스조성, 발열량 등을 파악하였다. 이를 통해 가스화, 연소 모델 개발에 활동 가능한 기초자료를 도출하였다. 건조/고형 슬러지의 연소 특성 실험은 직경 310 mm, 높이 720 mm의 Lab-scale 고정층 반응기를 사용하여 공기유량 100-400 L/min(97-390kg/m2hr)의 범위에 대해 수행해였다. 연소실험의 온도분포는 반응기 내부에서 5 cm 간격으로 설치된 열전대를 통해, 연료 무게 감소량은 로드셀을 통해 무게 감소량을 측정하였다. 이때 생성된 가스는 Online 가스분석기를 통해 CO, CO2, CH4, H2 를 분석하며, Micro-GC를 통해 CxHy 등을 일정 시간마다 분석하였다. 실험결과 해당 유량범위에서 슬러지 연소는 당량비가 1이하인 연료과잉 상태로써 유량이 증가할수록 화염면의 온도가 상승하며, 그 결과로 화염면 하단으로의 열전달이 증가하면서 화염 전파 속도가 증가하였다. 또한 촤의 느린 연소속도로 인해 화염면 상부에 누적되며 화염면이 화격자에 도달한 후 고온의 촤 연소 영역이 형성되었다. 측정된 온도와 가스 조성, 무게 감소 결과는 향후 연소모델 개발을 위한 기초자료로 활용할 수 있다.
        10.
        2014.01 KCI 등재 서비스 종료(열람 제한)
        Pyrolysis of biomass is the thermal decomposition of its carbohydrate structures into numerious hydrocarboncompounds, light gases and carbon-rich solid residue. Understanding the pyrolysis characteristics is essential asfundamental data for various thermo-chemical conversion of biomass. This study investigated slow pyrolysis of fourIndonesian biomass (sugarcane bagasse, cocopeat, palm kernel shell (PKS), umbrella tree) for a temperature range of300~600oC. With increase in temperature, all samples showed a decrease in the biochar yield as more compounds werereleased as vapors increasing the bio-oil and gas yields. The biochar became more carbon-rich with a carbon content of85% or higher at 500oC. However, the product yields and properties showed large variations between the samples.Cocopeat had the highest biochar yield, while wood and baggasse had the highest bio-oil yield. Despite the low massyields, the biochar of wood and bagasse had the best quality in terms of macro-pore and micro-pore development, whichis a key property for its applications as adsorbent, soil ameliorator, as well as fuel. The bio-oil did not have a sufficientlyhigh HHV for use as main fuel, but could be utilized through co-firing or slurry production with biochar. In the lightgases, CO and CO2 were dominant, but could be burned on-site to supply the heat required for pyrolysis.
        11.
        2013.11 서비스 종료(열람 제한)
        바이오매스의 활용 기술 중 열분해는 열적 분해를 통해 바이오촤, 타르(바이오오일, 열분해가스)를 생산할 수 있는 열처리 방법이다. 저속 열분해는 바이오촤 생산에 가장 이상적인 방법으로써 이를 통해 생산된 바이오촤는 토양에 활용할 경우 토양질 개량 및 온실가스를 반 영구적으로 격리할 수 있다. 또 다른 부산물인 바이오 오일과 가스를 연료 및 열원으로 사용하여 온실가스 저감효과와 에너지 효율을 향상시킬 수 있다. 본 연구는 인도네시아의 농업 부산물인 볏짚을 대상으로 저속 열분해 특성에 대해 분석하였다. 저속 열분해 실험 방법은 상온에서 300-700℃까지 약 10℃/min으로 승온하였다. 볏짚의 연료 특성은 수분함량이 7.3%, 회분의 함량은 20.9%, 휘발분/고정탄소(VM/FC)는 3.7으로 나타난다. 볏짚은 탄소 48.8 %daf, 수소 6.0 %daf, 산소 43.3 %daf 함량으로 나타나며, 발열량은 13.5 MJ/kg이다. 열분해 온도 조건 300-700℃에서 획득한 바이오촤의 수율은 열분해 온도가 상승함에 따라 57.0–39.1 wt.%로 감소한다. 바이오 오일과 열분해 가스의 수율은 각각 30.2-39.2, 12.9-21.7 wt.%로 증가한다. 열분해를 통해 생산된 바이오촤는 열분해 온도가 상승할수록 탈휘발되어 대부분 고정탄소로 이루어져있다. 또한, 수소(5.2-1.3 %daf)와 산소(22.8-7.0 %daf)의 함량이 낮아지며, 탄소(68.7-91.2 %daf)의 함량은 증가한다. 바이오매스 총 질량 대비 바이오촤의 탄소 수율은 97.3-102.9 %로 나타났다. 높은 탄소 함량의 바이오촤는 안정된 물질로써 산화 없이 토양내 장기간 존재하므로 탄소격리 효과를 얻을 수 있다. 2-50 nm 크기 기공의 비표면적은 600℃에서 약 85 m²/g으로 비교적 크지만, 그 이하 온도에서는 약 2-24 m²/g으로 낮게 나타났다. 기공체적 분석 결과, 100 nm-100 μm의 다양한 크기로 분포하였다. 바이오촤의 50 nm 이하의 기공에서는 토양내 영양분을 흡착하며, 5-40 μm에서는 공생미생물이 서식하여 작물의 성장 및 토양질 개선에 큰 이점이 있다. 열분해 오일은 분자량이 높은 탄화수소 성분으로 구성되어 검고 점도가 높은 Heavy phase와 수분의 함량이 높고 분자량이 낮은 탄화수소로 구성된 Aqueous phase로 나누어 분석하였다. Heavy phase의 수분함량은 약 7-16 %로 낮으며, Aqueous phase는 약 80-84 %로 높게 나타났다. 탄소함량은 약 25-29 %wet이며, 발열량은 약 11-13 MJ/kg으로 약 45 MJ/kg인 중유의 발열량에 비해 약 1/4로 나타난다. 바이오 오일의 에너지 수율은 바이오매스 열량 대비 31.9-41.7 %로 나타났다. 따라서, 연료로서 가치는 높지 않지만, 중유 및 다른 연료와 혼소하여 충분히 활용 가능하다. 또 다른 열분해 부산물 중 열분해 가스는 열분해 초기 온도에서는 CO와 CO₂가 발생하며, 약 450℃ 이후의 온도에서 소량의 CH₄와 H₂가 발생한다. 300, 400℃의 낮은 열분해 온도 조건에서 발열량은 3.3, 3.9 MJ/kg으로 낮지만, 500-700℃에서는 CH₄와 H₂의 영향으로 5.4-9.4 MJ/kg으로 증가하였다. 300-700℃의 온도에서 에너지수율은 바이오매스 열량 대비 3.2-15.3 %로 나타났다. 열분해 가스는 낮은 온도를 요구하는 열분해 공정의 열원으로 활용이 가능하다.