검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2016.03 KCI 등재 서비스 종료(열람 제한)
        For material recovery of black carbon and pyrolysis oil, pyrolysis is considered as an alternative to combustion-based technologies for treatment of waste tire. This study investigated the heat transfer optimization in a pyrolysis reactor for waste tire chips with a capacity of 24 t/d. The reactor was required to have a larger heat transfer rate from hot gas to tire chips in the early stage of pyrolysis, whereas the rate in the later stage should be lower. This was to prevent thermal cracking of heavy compounds in the pyrolysis vapor and to improve the quality of black carbon. CFD was applied to analyze the flow and heat transfer in the complex geometry of the reactor for a total of nine design cases. It was found that modifications to control the distribution of gas flow rate along the reactor are more effective for the present reactor than adjusting the measures for heat transfer enhancement (such as fins). The ideal design improvement was to divide the reactor into two gas sections for a separate control of the flow rate, and to remove the fins of which its alignment perpendicular to the flow inhibits the hot gas from approaching the tube of tire chips.