검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2015.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Until a recent date, Toyota Production System (called TPS) was introduced by many domestic companies to remove waste and reduce manufacturing cost. However, cases of substantial and effective improvement after the introduction are not much. Even though many companies have actively conducted TPS during that time, the outcome is not satisfactory. In this paper, we show the problems and core contents to consider in applying of TPS as follows. First, the innovative organizational culture formed by active participation of employees and leadership of the CEO is very important for a successful introduction of TPS above all. Second, it is necessary to prepare various training programs optimized for the field in order to continuously improve the competency of employees in each class, and to train skilled personnel through that programs. Third, it is necessary to improve the maturity level of TPS application through the construction of correct evaluation system on accomplishment of the production system. In addition, the problems that occur should be solved through the continuous improvement activities. These results will help to TPS introduction of the domestic small-medium companies. Therefore, this study will contribute to strengthen and improve the global competitiveness in the related industries.
        4,000원
        2.
        2016.03 KCI 등재 서비스 종료(열람 제한)
        For material recovery of black carbon and pyrolysis oil, pyrolysis is considered as an alternative to combustion-based technologies for treatment of waste tire. This study investigated the heat transfer optimization in a pyrolysis reactor for waste tire chips with a capacity of 24 t/d. The reactor was required to have a larger heat transfer rate from hot gas to tire chips in the early stage of pyrolysis, whereas the rate in the later stage should be lower. This was to prevent thermal cracking of heavy compounds in the pyrolysis vapor and to improve the quality of black carbon. CFD was applied to analyze the flow and heat transfer in the complex geometry of the reactor for a total of nine design cases. It was found that modifications to control the distribution of gas flow rate along the reactor are more effective for the present reactor than adjusting the measures for heat transfer enhancement (such as fins). The ideal design improvement was to divide the reactor into two gas sections for a separate control of the flow rate, and to remove the fins of which its alignment perpendicular to the flow inhibits the hot gas from approaching the tube of tire chips.
        3.
        2014.11 서비스 종료(열람 제한)
        바이오매스의 가스화 기술은 바이오매스를 합성가스로 변환하여 보일러, 엔진, 가스터빈 등에 직접적으로 활용하거나 화학적 변환을 통해 연료를 생산하는 등 에너지 밀도를 높이고 수송, 저장을 용이하게 할 수 있는 기술이다. 가스화 공정에서 바이오매스는 열분해 과정을 거치며 타르(다양한 종류의 탄화수소)와 가스가 생성된다. 이때, 타르는 약 350℃ 내외에서 응축되기 시작하며, 가스화기 등 각종 설비의 후단에 배관 막힘, 부식, 열전달 저하, 촉매 반응성 저하 등의 문제를 야기한다. 이러한 문제를 해결하기 위해 가스화기 내부에서 일차적으로 타르를 저감하는 방법에 대한 연구가 필요하다. 본 연구에서는 저속 열분해를 통해 생성된 타르의 특성에 대해 파악하였으며, 반응기 내부에서 가스의 체류시간 및 반응에 사용되는 촤(char)의 유/무 및 종류에 따른 타르의 분해 특성에 대해 분석하였다. 실험에 사용된 바이오매스 샘플은 전나무이며, 입자 크기는 1 cm³ 이고, 수분함량은 7.8%, 회분 함량 0.6%, 휘발분/고정탄소 비는 4.65으로 나타났다. 타르의 분해를 위해 사용된 촤는 미세 표면적, 기공분포, 밀도가 서로 다른 3 종류의 바이오매스(Paddy straw, PKS, 전나무)를 대상으로 열분해(800℃)를 통해 생산하였으며, 입자 크기를 0.5-1 mm 크기로 분류하여 실험하였다. 본 연구에서는 저속 열분해와 타르 분해 실험(열적 분해/촤 촉매반응)으로 나누어 실험을 진행하였다. 두 실험에 사용되는 반응기는 서로 직렬로 연결되어 있어 저속 열분해에서 생성된 열분해 증기(타르, 가스)가 타르 분해 반응기를 통과한다. 열분해는 고정층 반응기를 사용하여 최종 온도 500℃까지 약 10℃/min으로 승온 하였으며, 퍼지 가스는 질소(1.5 l/min)를 사용하였다. 타르 분해 반응기의 온도는 800℃로 유지하였고, 열분해 증기의 체류시간을 1, 3, 5초로 나누었고, 3종류의 촤를 사용해 타르의 전환 특성을 파악하였다. 저속 열분해의 생성물 수율은 촤 26.0%, 가스 22.8%, 수분/타르 51.2%로 나타났다. 열적 분해만 일어나는 경우 체류시간이 1-5 초로 증가할수록 수분/타르의 수율은 36.2-32.7%로 감소하였다. 반면, 고온 분위기에서 타르가 분해되어 가스로 변환되면서 가스의 수율은 38.0-42.1%로 증가하였다. 열적 분해에 비해 촤 촉매반응의 경우 수분/타르의 수율은 체류시간 1초에서 25.7-32.3%, 3초에서 17.8-23.4%, 5초에서 18.2-21.3%로 감소하였다. 3종류의 촤를 체류시간 3초에 대해 비교하면 수분/타르의 수율은 샘플별로 Paddy straw 23.4%, PKS 17.8%, 전나무 21.2%로 나타났다. 촤 촉매반응의 경우 고온에서 촤와 수분이 반응하여 CO, H2로 변환(C(s)+H2O⟶CO+H2)되어 수분/타르의 수율이 낮게 나타났다. 또한, 반응기 상단의 촤 입자 표면에 분자량이 큰 타르가 흡착되는 것으로 나타났다. 촤 종류에 따라 수분/타르의 수율의 차이는 각각 촤의 특성(미세표면적, 기공분포)에 따라 다양하게 나타났다. 결론적으로, 타르는 고온의 분위기에서 일차적으로 분해되며, 체류시작이 길고 촤를 사용할 때 농도가 낮아지며 타르의 저감 특성도 촤에 따라 변화하는 것을 확인하였다. 이 결과는 고정층 가스화기의 타르 저감을 위한 설계 개선에 활용될 수 있다.
        4.
        2014.11 서비스 종료(열람 제한)
        하・폐수 슬러지는 퇴비화, 소각, 해양투기, 매립, 건조 에너지화 등 다양한 방법을 통해 처리하였으나,해양배출 금지, 환경 문제 등으로 인해 처리상 어려움이 있다. 하・폐수 슬러지는 건조화 방식을 통해 고형연료로 변환이 가능하며, 이는 신재생에너지로 활용하여 열적 변환을 통해 에너지를 생산과 동시에 효율적으로 처리할 수 있다. 건조된 하・폐수 슬러지는 저위발열량 12-15 MJ/kg, 회분함량 20~30% 로써 열적 변환 방식에 따라 전・혼소용 연료로 충분한 활용이 가능하다. 따라서 본 연구에서는 건조/고형 슬러지를 대상으로 열중량분석, 열분해, 연소를 통해 연료 특성에 대해 파악하였다. 건조/고형화 슬러지는 산업폐수를 활용하여 열수 건조 후 성형된 고형 연료로써 수분은 5.73%로 나타났다. 회분의 함량은 36.27%, 가연분 함량(휘발분+고정탄소)는 58.0%, 저위발열량 14.28 MJ/kg 이다. 열중량분석은 약 10 mg의 미량의 샘플을 사용하여, 질소분위기에서 800℃까지 5-50℃/min으로 승온율에 따른 무게감소량 등 연료 특성에 대해 분석하였다. 전반적으로 약 100℃ 내외에서 수분이 증발되며, 250-520℃에서 열분해가 진행되는 것을 확인할 수 있었고, 승온율이 증가할수록 열분해 시 온도에 따른 무게감소량이 점점 감소하였다. 슬러지의 저속 열분해는 직경 100 mm, 높이 300 mm의 고정층 반응기를 통해 550℃까지 50℃/min 으로 승온하여 열분해 후 생성된 촤,타르와 합성가스의 양과 조성을 분석하였다. 열분해를 통해 생성된 Tar는 원소 조성을 파악하여 Tar내의 다양한 조성을 측정하였다. 생성된 가스는 연소실험과 동일한 방법을 통해 가스조성, 발열량 등을 파악하였다. 이를 통해 가스화, 연소 모델 개발에 활동 가능한 기초자료를 도출하였다. 건조/고형 슬러지의 연소 특성 실험은 직경 310 mm, 높이 720 mm의 Lab-scale 고정층 반응기를 사용하여 공기유량 100-400 L/min(97-390kg/m2hr)의 범위에 대해 수행해였다. 연소실험의 온도분포는 반응기 내부에서 5 cm 간격으로 설치된 열전대를 통해, 연료 무게 감소량은 로드셀을 통해 무게 감소량을 측정하였다. 이때 생성된 가스는 Online 가스분석기를 통해 CO, CO2, CH4, H2 를 분석하며, Micro-GC를 통해 CxHy 등을 일정 시간마다 분석하였다. 실험결과 해당 유량범위에서 슬러지 연소는 당량비가 1이하인 연료과잉 상태로써 유량이 증가할수록 화염면의 온도가 상승하며, 그 결과로 화염면 하단으로의 열전달이 증가하면서 화염 전파 속도가 증가하였다. 또한 촤의 느린 연소속도로 인해 화염면 상부에 누적되며 화염면이 화격자에 도달한 후 고온의 촤 연소 영역이 형성되었다. 측정된 온도와 가스 조성, 무게 감소 결과는 향후 연소모델 개발을 위한 기초자료로 활용할 수 있다.
        5.
        2014.01 KCI 등재 서비스 종료(열람 제한)
        Pyrolysis of biomass is the thermal decomposition of its carbohydrate structures into numerious hydrocarboncompounds, light gases and carbon-rich solid residue. Understanding the pyrolysis characteristics is essential asfundamental data for various thermo-chemical conversion of biomass. This study investigated slow pyrolysis of fourIndonesian biomass (sugarcane bagasse, cocopeat, palm kernel shell (PKS), umbrella tree) for a temperature range of300~600oC. With increase in temperature, all samples showed a decrease in the biochar yield as more compounds werereleased as vapors increasing the bio-oil and gas yields. The biochar became more carbon-rich with a carbon content of85% or higher at 500oC. However, the product yields and properties showed large variations between the samples.Cocopeat had the highest biochar yield, while wood and baggasse had the highest bio-oil yield. Despite the low massyields, the biochar of wood and bagasse had the best quality in terms of macro-pore and micro-pore development, whichis a key property for its applications as adsorbent, soil ameliorator, as well as fuel. The bio-oil did not have a sufficientlyhigh HHV for use as main fuel, but could be utilized through co-firing or slurry production with biochar. In the lightgases, CO and CO2 were dominant, but could be burned on-site to supply the heat required for pyrolysis.
        6.
        2013.11 서비스 종료(열람 제한)
        바이오매스의 활용 기술 중 열분해는 열적 분해를 통해 바이오촤, 타르(바이오오일, 열분해가스)를 생산할 수 있는 열처리 방법이다. 저속 열분해는 바이오촤 생산에 가장 이상적인 방법으로써 이를 통해 생산된 바이오촤는 토양에 활용할 경우 토양질 개량 및 온실가스를 반 영구적으로 격리할 수 있다. 또 다른 부산물인 바이오 오일과 가스를 연료 및 열원으로 사용하여 온실가스 저감효과와 에너지 효율을 향상시킬 수 있다. 본 연구는 인도네시아의 농업 부산물인 볏짚을 대상으로 저속 열분해 특성에 대해 분석하였다. 저속 열분해 실험 방법은 상온에서 300-700℃까지 약 10℃/min으로 승온하였다. 볏짚의 연료 특성은 수분함량이 7.3%, 회분의 함량은 20.9%, 휘발분/고정탄소(VM/FC)는 3.7으로 나타난다. 볏짚은 탄소 48.8 %daf, 수소 6.0 %daf, 산소 43.3 %daf 함량으로 나타나며, 발열량은 13.5 MJ/kg이다. 열분해 온도 조건 300-700℃에서 획득한 바이오촤의 수율은 열분해 온도가 상승함에 따라 57.0–39.1 wt.%로 감소한다. 바이오 오일과 열분해 가스의 수율은 각각 30.2-39.2, 12.9-21.7 wt.%로 증가한다. 열분해를 통해 생산된 바이오촤는 열분해 온도가 상승할수록 탈휘발되어 대부분 고정탄소로 이루어져있다. 또한, 수소(5.2-1.3 %daf)와 산소(22.8-7.0 %daf)의 함량이 낮아지며, 탄소(68.7-91.2 %daf)의 함량은 증가한다. 바이오매스 총 질량 대비 바이오촤의 탄소 수율은 97.3-102.9 %로 나타났다. 높은 탄소 함량의 바이오촤는 안정된 물질로써 산화 없이 토양내 장기간 존재하므로 탄소격리 효과를 얻을 수 있다. 2-50 nm 크기 기공의 비표면적은 600℃에서 약 85 m²/g으로 비교적 크지만, 그 이하 온도에서는 약 2-24 m²/g으로 낮게 나타났다. 기공체적 분석 결과, 100 nm-100 μm의 다양한 크기로 분포하였다. 바이오촤의 50 nm 이하의 기공에서는 토양내 영양분을 흡착하며, 5-40 μm에서는 공생미생물이 서식하여 작물의 성장 및 토양질 개선에 큰 이점이 있다. 열분해 오일은 분자량이 높은 탄화수소 성분으로 구성되어 검고 점도가 높은 Heavy phase와 수분의 함량이 높고 분자량이 낮은 탄화수소로 구성된 Aqueous phase로 나누어 분석하였다. Heavy phase의 수분함량은 약 7-16 %로 낮으며, Aqueous phase는 약 80-84 %로 높게 나타났다. 탄소함량은 약 25-29 %wet이며, 발열량은 약 11-13 MJ/kg으로 약 45 MJ/kg인 중유의 발열량에 비해 약 1/4로 나타난다. 바이오 오일의 에너지 수율은 바이오매스 열량 대비 31.9-41.7 %로 나타났다. 따라서, 연료로서 가치는 높지 않지만, 중유 및 다른 연료와 혼소하여 충분히 활용 가능하다. 또 다른 열분해 부산물 중 열분해 가스는 열분해 초기 온도에서는 CO와 CO₂가 발생하며, 약 450℃ 이후의 온도에서 소량의 CH₄와 H₂가 발생한다. 300, 400℃의 낮은 열분해 온도 조건에서 발열량은 3.3, 3.9 MJ/kg으로 낮지만, 500-700℃에서는 CH₄와 H₂의 영향으로 5.4-9.4 MJ/kg으로 증가하였다. 300-700℃의 온도에서 에너지수율은 바이오매스 열량 대비 3.2-15.3 %로 나타났다. 열분해 가스는 낮은 온도를 요구하는 열분해 공정의 열원으로 활용이 가능하다.