The non-reacting flow field and the movement of sand particles inside a 30MW circulating fluidized bed combustor is numerically simulated via the finite volume method. The primary air is supplied through 23x23 array of nozzles located on the bottom and the secondary air is supplied through 12 inlet pipes located on the side walls. The steady state velocity field shows that a very complex flow pattern is formed in the lower part of the combustor. As the gas moves upward, the velocity magnitude decreases and the gas exits the combustor after hitting the top wall. To investigate the behavior of sand particles with different diameters, a particle tracking calculation is performed by introducing sand particles continuously at the z=3 m plane. For the given air flow rate condition, sand particles smaller than 0.3 mm show a complex movement pattern near the secondary air inlet and then rise toward the outlet.