Polysilsesquioxanes are essentially hybrid materials consisting of inorganic framework and organic functional groups. A proof of concept study for a new type of gas separation membrane was considered based on the ladder-structured poly(phenyl-co-glycidoxypropyl) silsesquioxanes with phenyl:glycidoxypropyl copolymer ratio of 6:4 (LPG64), which were synthesized by a base-catalyzed sol-gel reaction. Also, by selectively introducing polyethylene oxide (PEO) groups covalently bound to the LPSQ, we effectively suppressed the PEO crystallization, allowing for excellent CO2/H2 and CO2/N2 separation under single as well as mixed gas conditions. Engineering molecular structures of LPSQs will be discussed in detail to investigate the fundamentals of gas transport in LPSQ-based membranes as well as their extended application.