Graphene is well-known as a perfect barrier because of its dense and delocalized cloud consisting of p-orbitals. However, graphene membrane synthesized by chemical vapor deposition (CVD) intrinsically contains structural defects (e.q., grain boundaries and point defects), which allow any small molecules to penetrate through the defective graphene membrane. Here we prepared polycrystalline graphene membranes including such defects, and investigated the gas transport behavior through the graphene membrane. Also, we compared the gas permeation behavior (or barrier properties) of large-area, single crystalline graphene membrane without any structural defects.