Polymer electrolyte membrane (PEM) is one of key elements to determine both electrochemical performances and lifetimes of fuel cell electric vehicles (FCEVs). PEM is exposed to a variety of dynamic stimuli (e.g., temperature, humidity, pressure, fuel gases and so on) under their operation conditions and meets unavoidable mechanical damages derived from unequal pressure difference between anode and cathode feed gases. Even though there have been approaches to evaluate the mechanical strength of PEM materials, most of the trials could provide static information on their mechanical strength. In this study, a pressure-loaded blister hybrid system connected with gas chromatography was developed to disclose the efficacy of the system as an evaluation tool of dynamic PEM strength under realistic FCEV operation conditions.