High membrane costs hinders large scale application of microporous ceramic membranes. Preparation on elements of large specific membrane area are a prospective strategy to overcome this problem. NF membranes with a cut-off of 450 Da were produced for first time in a 163-channel tube geometry of 1.25 m². The membranes were successful tested in drink water production and in treatment of produced water from oil production. Zeolite-NaA-membranes were prepared for the first time inside of 1.2 m long tubes in four channel geometry of 0.9 m². Natural gas is dried by stripping with triethylene glycol (TEG). TEG will be regenerated by distillation at 190°C to 205°C. A pilot plant for TEG drying with Zeolite-NaAmembranes at 120°C for a capacity of 10.000 m³/h natural gas and is running since October 2016.
Carbon membranes can be applied to several process steps in natural gas, biogas or flue gas treatment. The significant more expensive inorganic membranes must have a higher separation performance compared to the polymeric membranes. Because of its resistance to solvents, pressure and temperature inorganic membranes have a chance in the marketplace. The predominant transport mechanism is molecular sieving (MSCM). Graphitic carbon do have lattice plane distances in the range of small gas molecules. Different steps in the production process allowed controlling the size of pores. High separation factors in gas mixtures were achieved. Reproducibility in the fabrication process is an unsolved problems. Carbon membranes showed a robust performance also in presence of impurities like H2O and H2S.
화석연료 사용에 의한 환경문제의 해결을 위한 방법의 하나로 수소에너지에 대한 연구가 활발히 진행되고 있다. 물을 분해에 의한 수소 제조는 전기분해, 광화학적, 열화학적, 생물학적 방법 등이 있다. 물의 전기분해 기술은 전기를 이용하여 수소를 물로부터 직접 제조하는 방법으로 지구오염물질인 이산화탄소의 배출이 없는 것이 특징이다. 특히, 물의 전기분해 방법 중에서 알칼리 수전해는 오래전부터 알려진 수소제조 방법으로 전해액으로 ∼30 wt%의 KOH수용액 또는 ∼20 wt%의 NaOH수용액을 사용하며, 셀은 수산화이온 (OH-) 만을 선택적으로 통과시키는 격막, 수소와 산소를 발생시키는 전극으로 구성된다. 최근에는 양.음이온교환막의 발 전과 더불어 전해효율이 60% 이상에 이를 만큼 분리막의 중요성이 부각되고 있다.
분자체(molecular sieve)로 알려진 제올라이트 분리막 중에 8-membered ring (MR) 구조를 지닌 제올라이트를 연속적인 분리막 형태로 제작하고자 한다. 8 MR 구조 중에서도 DDR 유형의 제오라이트 기반으로 이산화탄소에 대해 분자체 역할을 할 수 있는 분리막으로 사용할 수 있음을 보이고자 한다. 단순히 이산화탄소를 다른 분자 크기가 큰 질소나 메탄으로부터 분리하는 게 아니라, 도전적인 과제로서 수분이 존재하는 feed 조건에서 높은 이산화탄소 분리 능력을 지닐 수 있도록 분리막을 제작하고자 한다. 이번 발표에서는 최근에 얻은 DDR 유형 제올라이트 분리막을 만드는 방법과 그 분리막의 이산화탄소 분리 능력에 대해 발표하고자 한다.
Ceramic membranes can be applied under extreme operating conditions such as low pH, high pressure and high temperature. In particular SiC has excellent mechanical properties and also has excellent properties related to membrane performance. However, high processing temperature increases cost of SiC products and thus limit’s its use. In this study oxidation bonding technique was used to fabricate cost-effective SiC microfiltration membrane at low temperature. The oxidation behavior at different thermal treatments was related with pore morphology and ultimately the membrane permeability. We have found that the membrane made by coating of oxidation bonded SiC layer over clay-bonded SiC support, sintered at 1000-1100°C could make a defect-free microfiltration membrane with pure water permeability above 700 LMH per bar. The membrane has narrow pore size distribution with average pore size about 0.1 μm.
알루미나 튜브 지지체의 표면에 NaA제올라이트 분리막을 수열합성법으로 제조하고, 이를 투과증발 공정에 사용하였다. 분리막의 제조에 사용된 지지체는 기공율 40%, 기공경 0.7 μm를 갖는 지지체를 사용하였으며, 수열합성법으로 제 조된 NaA제올라이트 분리막은 약 18 μm의 두께를 나타내었다. 제조된 분리막 은 단일 분리막 형태와 분리막 모듈로 구성하여 각각 투과증발 성능을 평가하였으며, 단일 분리막은 10L Batch type반응기에서 투과증발 공정을 수행하고, 분리막 모듈은 1 ton Batch type 반응기에서 투과증발 공정을 수행하여 그 성능을 평가하였다.
Until now, single MFI nanosheets have been prepared using a multi-step approach based on the exfoliation of layered MFI, followed by centrifugation to remove nonexfoliated particles. This top-down method is time-consuming, costly and low-yield and it produces fragmented nanosheets with sub micrometre lateral dimensions. Alternatively, direct (bottom-up) synthesis could produce high-aspect-ratio zeolite nanosheets, with improved yield and at lower cost. Here we use a nanocrystal-seeded growth method triggered by a single rotational intergrowth to synthesize high-aspect-ratio MFI nanosheets with a thickness of 5 nanometres (2.5 unit cells). These high-aspect-ratio nanosheets allow the fabrication of thin and defect-free coatings that effectively cover porous substrates. These coatings can be intergrown to produce high-flux and ultra-selective MFI membranes that compare favourably with other MFI membranes prepared from existing MFI materials (such as exfoliated nanosheets or nanocrystals).
고기능성 소재를 기반으로 한 뛰어난 성능의 분리막이 적은 비용으로 대량 생산 가능한 모듈로 통합 된다면 뛰어난 에너지 효율성을 가진 분리공정을 제시할 수 있다. 본 연구에서는 금속-유기 구조체 중에서도 제올라이트형 이미다 졸레이트 구조체 막을 이용한 가스상 탄화수소 분리를 제안하고자 한다. 제올라 이트형 이미다졸레이트 구조체는 유연한 성질의 나노 사이즈의 동공을 이용한 고성능의 분자체로 최근 들어 각광 받고 있다. 특히 계면 미세유체 막 공정을 통해서 이와 같은 고기능성 소재도 스케일 가능한 막분리 플랫폼으로 통합될 수 있는 가능성이 밝혀졌다. 본 연구에서는 이와 같은 미세동공 구조체 중공사 막을 이용한 부탄 이성질체 분리 및 에탄올, 프루푸랄 (furfural) 탈수 공정에 관한 내용을 소개하고자 한다.
올레핀/파라핀 분리는 산업에서 가장 중요하고 도전적인 분리 이슈 중의 하 나이다. 흡착 및 막은 에너지 절약적 분리 기술이기에 올레핀/파라핀 분리를 위한 흡착 및 막 기술의 개발이 많은 관심을 받고 있다. 본 연구에서는 유무기 하이브리드 세공체(metal-organic framework, MOF)의 기공 내부에 올레핀 분자와 π complexation이라는 특별한 인력을 지니는 Cu 1가 이온을 효율적이며 안정적으로 함침하는 방법을 제시하였다. 또한, Cu 1가 이온이 함침된 MOF를 고분자 막과 결합하여 올레핀 선택 분리용 혼합기질막(mixed matric membranes)을 성공적으로 개발하였다.
The gas separation through membrane is considered as a promising solution for the stabilization of greenhouse gas level of atmosphere attributed from CO2. The separation process of membrane allows low energy requirement, low cost, and ease of operation. However, conventional polymeric membranes generally suffer from the trade-off between permeability and selectivity, which remains as one of the most important challenges for commercialization. Mixed matrix membranes (MMMs), consisting of a polymer matrix and porous nano-filler, are considered to be a promising solution to overcome the trade-offs in polymeric membranes. Herein the porous nano-structures were fabricated to enhance the permselectity of CO2 separation membranes. The MMM which were fabricated with prepared porous nano-filler showed permeability improvement without significant selectivity loss.
CCS is not a recent issue. Efforts to reduce carbon dioxide since the 1990s have been around the world, and the carbon dioxide emitted from post-combustion flue-gases is still enormous. Membrane technology also has been widely considered as a good candidate to enrichment of CO2, but it has not been verified about the remarkable advantages compare to the other technologies; such as amine scrubbing or physical adsorption. Numerous membranes for CO2 separation with high selectivity and permeance have been developed, but the membrane process for those applications are much less. The industrial technology to concentrate and store the carbon source has not been proved enough for its massive emission and engineering issue. Moreover, membrane technology lacks database for large scale processes. In this talk, the membrane process for CCS industry will be introduced. The considerable factors for industrial application of membrane technology will be also announced.
2015년 파리기후변화협약에 의한 신기후체제로 전세계 195개국이 온실가스 감축을 약속하게 되었다. 한국도 2013년 기준 온실가스 배출이 7억 톤을 기록 하였으며 BAU대비 37% (3.1억 톤)의 감축의무를 약속하고 있다. 국내외의 철강, 화학, 환경분야 및 천연가스전, 석탄전, 세일가스 등에서 대량 발생하는 산업부 생가스로부터 이산화탄소, 메탄, 일산화탄소, 수소 등을 분리하여 탄소자원화 (carbon resources utilization)의 원료로 사용하거나 수소, 메탄 등의 신재생 에 너지를 확보하는 분리기술에 대한 중요성이 높아지고 있다. 본 발표에서는 이러한 부생가스들의 발생현황과 이들로부터 고순도의 이산화탄소 및 메탄을 분리 회수할 수 있는 막분리기술의 연구동향과 화학연구원에서 수행중인 기체분리막 기술을 소개한다.
Polymer electrolyte membrane (PEM) is one of key elements to determine both electrochemical performances and lifetimes of fuel cell electric vehicles (FCEVs). PEM is exposed to a variety of dynamic stimuli (e.g., temperature, humidity, pressure, fuel gases and so on) under their operation conditions and meets unavoidable mechanical damages derived from unequal pressure difference between anode and cathode feed gases. Even though there have been approaches to evaluate the mechanical strength of PEM materials, most of the trials could provide static information on their mechanical strength. In this study, a pressure-loaded blister hybrid system connected with gas chromatography was developed to disclose the efficacy of the system as an evaluation tool of dynamic PEM strength under realistic FCEV operation conditions.
계면동전위(electrokinetic potential)로 불리는 제타전위(zeta potential)란 표면 전하적 특성을 정량화한 값으로, 전기동역학적 현상으로 인하여 발생하는 전기적 유동층을 통과하는 전위차를 말한다. 이러한 제타전위는 표면화학분야의 기초, 응용적인 연구에서 중요하다. 제타전위는 용액 내에서 표면 전하 특성 정보를 얻을 수 있다. 이를 측정하는 방법으로는 계면동전위효과(electrokinetic effects)를 이용한다. 현재 위 효과를 이용하여 제타전위 측정 기기로 측정이 쉽게 가능하고, 많은 연구가 진행되어왔다. 본 연구에서는 계면동전위의 원리, 측 정, 결과 등을 제시하면서 분리막 표면 특성평가에 관한 내용을 제시하였다.
Membrane-based gas separation is one of the next generations’ gas separation technology for various gas and chemical industries (e.g. air separation, H2, CO2 separation, hydrocarbons, and fluorinated gas separation, etc). Membrane has the advantages of i) low energy consumption without a phase change during the separation, ii) small footprint and easy scale-up of membrane modules, and iii) clean process without any emission of harmful byproducts. Membrane materials are mostly composed of polymeric, inorganic and metallic materials whereas membrane modules are fabricates as flat-sheet, plate-and-frame, spiral-wound and hollow fibers. In this presentation, the evaluation method of membrane materials and modules for gas separation applications will be discussed.
고분자 분리막을 구성하고 있는 고분자의 종류에 따른 화학구조는 고분자 분리막의 특성을 결정짓는 가장 중요한 요소가 된다. 그러나, 고분자의 경우 다양한 주쇄 구조 및 작용기 구조, 그리고 복잡한 구조적 특징을 갖기 때문에, 기존의 실험적인 방법을 통한 분석으로는 정확한 내부 구조를 파악하는 데에 한계가 있다. 양자역학, 분자동역학 등 분자 전산모사 기술은 이러한 고분자의 내부 구조를 원자 및 분자 수준에서 직접 파악하는 데 도움을 줄 수 있다. 이외에도 메조스케일 전산모사 기술은 원자를 그룹화하여 하나의 구슬(bead)로 표현을 하기 때문에 더 큰 분자 구조의 모사가 가능하고 이를 통하여 상분리 등의 특성 분석에 효과적이다. 본 발표에서는 이러한 다양한 전산모사 기술을 이용한 고분자 분리막의 특성 분석에 대해 소개하고자 한다.
전기⋅전자산업이 급격하게 발전함에 따라 유가금속 및 희소금속의 수요가 급증하고 있다. 유가금속들은 주로 제련산업 공정에서 다량 방출되며, 회수기술 부족으로 중화, 치환, 흡착을 통해 폐기되어 큰 비용으로 경제적이지 못하다. 이에 분리막을 통한 유가금속회수 소재개발의 필요성이 강조되고 있다. 유가금속이 포함된 습식제련 공정 침출액(15% 황산 용액, 온도 60°C)은 다량의 다가이온과 1가이온을 포함하고 있기 때문에 이온별 분리가 가능해야 하며, 특히 구리와 같은 2가 유가금속 분리성능이 우수해야 한다. 또한, 지속적인 분리/농축을 위해 산에 대한 안정성이 중요하다. 따라서 본 연구를 통해 2가 금속 배제율 98%, 유량 33GFD 성능을 1개월 이상 유지하는 나노분리막 제조 연구 개발을 수행하고 있다.
본 연구에서는 Piperazine (NE70) 및 m-phenylene diamine (NE90) 기반의 나노여과 분리막의 강산 용액에 대한 취약성 연구를 진행하였다. 15 wt% 황산 수용액에 각 분리막을 노출 시킨 후, 물리화학적 특성 및 투과특성 변화를 다양한 분석 툴을 활용하여 확인하였으며, 분리막의 아마이드 기가산에 의해 어떻게 영향을 받는 지를 열역학점 관점 (활성화 에너지 및 twist angle) 에서 살펴보았 다. 반응 결정 단계에서의 activation energy 차이 및 amide의 공명 정도를 나 타내는 twist angle 값을 통해 piperazine (NE70) 기반 분리막이 상대적으로 내산성이 취약함을 확인 할 수 있었다.
Nanofiltration Membranes (NF) contain nanometer pores to selectively separate divalent ions and organic species from water. These membranes are most often made of polymeric thin films and are used in water softening applications to remove scale forming ions. NF membranes which can survive in harsh conditions such as acidic environments have drawn interests in the industry. Acid resistant nanofiltration membrane (ARM) was fabricated using interfacial polymerization reaction of a specially formulated monomers on a support layer. ARM showed durability in acidic environments. As compared to NE40, ARM showed little change in flux and divalent ion rejection after being exposed to 15% sulfuric acid solution for 30 days. The ARM showed stable performance in comparison to regular NF membranes, losing both flux and rejection.
수용액과 유기용액에 방향족 단량체를 사용하여 계면중합을 통하여 폴리아미드 나노여과막을 제조하고 황산내구성, 내열성 실제 제련액 투과물성을 평가하였다. 수용액에 지방족 디아민을 사용한 나노여과막에 비해서 방향족 디아민을 사용한 경우에 내산성이 매우 우수하였다. 방향족 단량체를 사용한 경우에는 1 가 이온 제거율 낮추기 위하여 첨가제 사용하였다. 내열성은 실제 제련액의 경우는 2가 이상의 이온에 대해서는 회수가 가능하였고 1가 이온 및 황산의 경우 에는 투과수로 빠져 나오는 것을 확인하였다.