(주)파인텍에서 개발한 NaA 제올라이트는 LTA구조의 제올라이트에 Na+를 이온 교환하여 제조하였으며, Si/Al비율이 1을 갖는 강한 친수성을 나타내는 분리막이다. NaA 제올라이트 분리막은 18~20㎛의 막두께를 나타내었으며, Single tube의 막면적은 0.02㎡를 갖는 분리막을 사용하였다. 이와 같은 분리막을 사용하여 에탄올, 이소프로필알코올, 부탄올 등에 포함된 수분을 제거하기 위한 투과증발 평가를 수행하였다. 다양한 Feed 종류에 따라 동일한 분리막을 이용해 물을 선택적으로 분리할 수 있음을 확인하였다.
이 논문은 2017년도 한국연구재단 국제협력사업의 지원을 받아 연구되었음(NRF-2016K1A3A1A48954033).
(주)파인텍에서 개발한 제올라이트 4A 분리막을 이용하여 물/알코올의 단일및 혼합성분의 투과증발 실험을 수행하였다. 다양한 온도 및 농도 조건 실험을 통해 물/메탄올(분리계수 250 이상) 물/에탄올(3,000 이상), 물/이소프로필알코올(1,500 이상), 물/부탄올 (1,500 이상) 혼합물로 부터 물을 선택적으로 분리할 수 있음을 확인하였다. 활동도계수-퓨개시티 모형, GMS 모형 및 Dusty Gas 모형을 이용하여 단일성분 및 혼합물의 투과증발 거동을 모사하였으며, GA (Genetic Algorithm) 및 SQP (sequential quadratic programming)를 이용한 상수추정을 통하여 제올라이트 활성층의 흡착 및 확산 상수를 구하였다.
본 연구에서는 제올라이트 4A 분리막((주)파인텍)에서의 물과 알코올(메탄올, 에탄올, IPA, 부탄올)의 1성분, 2성분 그리고 3성분 투과증발 특성을 실험 및 모형을 통해 분석하였다. 다양한 온도 및 농도 조건 실험을 통해 제올라이트 4A 분리막이 알코올로 부터 물을 선택적으로 분리할 수 있음을 확인하였으며, 이때 분리계수는 각각 물/메탄올 150 이상, 물/에탄올 3,000 이상, 물/IPA 1,500 이상, 물/부탄올 1,500 이상이었다. Generalized Maxwell Stefan 모형 및 Dusty Gas 모형을 이용하여 단일성분 및 혼합물의 투과증발 거동을 모사하였으며, Genetic Algorithm을 이용한 상수추정을 통하여 비지지체의 흡착 및 확산 상수를 구하였다.
본 연구에서는 (주)파인텍에서 제조한 제올라이트 4A 분리막을 이용하여 물/메탄올, 물/부탄올 혼합물의 투과증발 실험을 수행하였다. 분리막을 투과한 기체분자들은 액체질소트랩을 이용하여 포집하였으며, 기체크로마토그래피(TCD)를 이 용하여 혼합물의 조성을 분석하였다. 실험을 통해 물과 메탄올(분리계수 최대 250 이상), 물과 부탄올(분리계수 최대 1,500 이상)의 혼합물에서 선택적으로 물을 분리하는 것을 확인하였다. GMS (generalized Maxwell Stefan) 이론을 적용하여 2성분 계의 투과증발 거동을 모사하였으며, 상수추정을 통하여 제올라이트 비지지체의 흡착상수 및 확산상수를 구하였다. 제올라이 트 4A 분리막의 경우 기공의 크기가 물보다는 크고, 메탄올, 부탄올 보다는 작기 때문에, 알코올로부터 물을 분리시키는 공정 에 적용시킬 수 있다. 바이오 에탄올 분리, 부탄올 분리, 막반응기, 하이브리드 반응-탈수 공정 등에 적용할 수 있을 것으로 사료된다.
이산화탄소를 이용한 메탄올 합성반응과정에서 생성되는 물, 메탄올, 부탄올로 이루어진 혼합용액에서 제올라이트 분리막을 이용하여 물을 분리시키기 위해 투과증발실험을 진행하였다. 투과증발실험에서 사용된 분리막은 ㈜파인텍에서 합성된 제올라이트 분리막을 공급받아 사용하였다. 투과증발실험에서는 물을 분리하는 성능을 확인하기 위해 가스크로마토그래피 등의 실험장비와 성능지표 를 나타내는 계산식들을 사용하였다. 실험을 통해 물과 메탄올(분리계수 최대 250 이상), 물과 부탄올(분리계수 최대 1500 이상)의 혼합물에서 선택적으로 물 을 분리하는 것을 확인하였다. GMS (Generalized Maxwell Stefan) 이론을 적용 하여 2성분계의 투과증발 거동을 모사하였으며, 상수추정(parameter estimation) 을 통하여 제올라이트 비지지체의 흡착상수 및 확산상수를 구하였다.
알루미나 튜브 지지체의 표면에 NaA제올라이트 분리막을 수열합성법으로 제조하고, 이를 투과증발 공정에 사용하였다. 분리막의 제조에 사용된 지지체는 기공율 40%, 기공경 0.7 μm를 갖는 지지체를 사용하였으며, 수열합성법으로 제 조된 NaA제올라이트 분리막은 약 18 μm의 두께를 나타내었다. 제조된 분리막 은 단일 분리막 형태와 분리막 모듈로 구성하여 각각 투과증발 성능을 평가하였으며, 단일 분리막은 10L Batch type반응기에서 투과증발 공정을 수행하고, 분리막 모듈은 1 ton Batch type 반응기에서 투과증발 공정을 수행하여 그 성능을 평가하였다.
투과증발 공정은 공비점 부근의 함수 유기화합물로부터 선택적으로 물은 분리하는 기술로 에너지 절약형 분리 기술이다. 본 연구에서는 이와 같은 투과증 발 플랜트의 개발을 위하여 α-Alumina 지지체에 합성한 NaA제올라이트 분리막 을 사용하였으며, 1 ton/day급과 250 L/batch급의 플랜트를 개발하였다. 개발한 투과증발 플랜트는 함수에탄올을 대상으로 탈수 평가를 수행하였으며, 250 L/batch급의 플랜트는 억새의 발효를 통해 생산한 함수 바이오에탄올을 이용하여 탈수 성능을 평가하였다.
반도체 공정에서 에칭공정은 실리콘 기판위에 패턴된 절연층을 식각하는 공정으로 분진과 미반응 가스를 배출하며, 다량의 질소와 혼합되어 실질적으로 수 ppm으로 배출되어, 주로 Scrubber를 통하여 후처리가 수행되고 있으나, 처리효율이 저하되는 단점이 있다. 따라서 본 연구에서는 막분리 공정을 통하여 질소와 PFCs를 분리회수하는 통합시스템을 개발하여, PFCs 가스 분리,회수에 대한 평가를 수행하였으며, 회수율 95%, 농축비 1을 나타내었다.
This study is to compose the optimized membrane module process system to selectively separate and treat toxic gas emitted from the semiconductor process. To optimize the operation of membrane module process system to treat toxic gas, the inlet toxic gas toward the membrane module shall have equal flux and equal pressure. Therefore, if the inlet flux on the membrane may be equalized only with the adjustment of pipe diameter and arrangement without installation of devices such as flowmeter at the junction between distributing pipe and separation membrane, the pipe composition of membrane module process system may be optimized to reduce the cost as well. Here, the inlet gas pressure toward the membrane module shall be above 3 bar, and thus in this study, the system was established for gas to be compressed with the compressor to stably maintain the pressure at the inlet of membrane module. Accordingly, the flow and pressure of gas within the pipe from the compressor to the membrane module were evaluated through the numerical analysis to optimize the diameter and arrangement of pipe - eventually to be reflected on the on-site design. Based on the result of flow analysis, the 5,000 LPM fluoride gas separation system to be applied to the actual semiconductor process was established, and to confirm the separation and return efficiency of NF3, CF4, and SF6, in this study 1,000 ppm of highly concentrated NF3, CF4, and SF6 were injected into the system to check the rate of separation and return. The system was continuously operated for 300 hours, and in case of SF6 and CF4, on average of 93% or higher return rate and concentration ratio of 1 were maintained, while in case of NF3, on average of 90% or higher return rate and concentration ratio of 1 were maintained. Therefore, it was confirmed that the fluoride gas separation system may be applied as a low-energy consumption high-efficiency system for the electronic industry.
In this research, chemical vapor deposition equipment built in the semiconductor·CVD (Chemical Vapor Deposition)process was introduced. Through polysulfone hollow fiber membranes under similar conditions to those of the actualprocess, conditions such as flow and pressure were used to observe the influence in order to separate and collect the SF6and CF4 substances. Results showed that as the retentate flow rate of the discharge unit increased and the residence timeto penetrate the membrane decreased, the emission concentration increased. As the pressure of the discharge unit increasedand the exhaust flow decreased, when the retentate flow rate was 10L/min, CF4 was shown to have a density of 4,963ppm, and it was 4,028ppm for SF6 the gas mixture had a concentration effect of three to four ratio. In addition, throughthe separation factor of fluorinated gases that arise in the actual process, the collection and concentration of SF6 and CF4were possible each gas’s recovery rate was higher than 99%.
This research was conducted to configure an optimal membrane module system that would selectively separatehazardous gases which are emitted during the processes in the semiconductor industry. In order to identify the most integralcharacteristic results, a numerical analysis formula which incorporates the dimensions of pipe diameter and gas flow ratewas utilized. Based on the results of the numerical analysis formula, a prototype designed with the main pipe being 100Awith gas outlets made with identical diameter thickness to the main pipe, set at equal intervals, was built. When the gasflow rate is set at 100L/min, although the processing outlets 1, 2, and 3 showed 0.03m/sec deviations in the rate ofspeed, when considering the variables of the average flow rate, the same emission rates are noted. However, in the instanceof when the overall prototype pipe dimensions was enlarged to 200A and the gas flow rate was increased to 500L/min,there was better stabilization. Therefore concluding that as the pressure rates flowing in the main pipe increases, morestable characteristics at the gas outlets can be found.
본 연구에서는 반도체 공정에서 배출되는 유해가스를 선택적으로 분리하여 처리하기 위한 최적화된 막 모듈처리시스템을 구성하고자 한다. 이에 유해가스 처리를 위한 막 모듈 처리시스템의 운전 최적화를 위해서는 막 모듈로 유입되는 유해가스의 유량과 압력이 동일해야 한다. 따라서 분배관에서 분리막 모듈이 연결되는 시점에 특별한 유량계 등에 장치들을 설치하지 않고 오직 배관의 관경과 배치만으로 분리막에 유입 유량을 동일하게할 수 있다면 분리막 모듈 처리 시스템의 배관 구성을 최적화함으로 비용 절감 등에 효과를 동시에 가질 수 있다. 이에 본 연구에서는 실제 현장 여건을 고려한 기준 배치와 변수별 연구를 통해 최적화된 상용급 분리막 모듈 시스템을 구성하고자 한다. 따라서 3차원 수치해석적 연구를 통하여 막 모듈 설비의 유입 배관 내에 가스의 유동 특성을 파악하여 배관 직경 및 배치를 최적화하여 현장 설계에 반영하고자 한다. 배관내 유동 해석을 위해 k-ε 난류 모델을 적용하였고, 배관 벽면부에 형성되는 층류저층을 해석하기 위하여 벽함수를 적용하였다. 이때 상용급 분리막 모듈 시스템에서 처리하는 가스 유량은 3,000ℓ/min이다. 기준 조건으로 제안된 상용급 분리막 모듈 시스템의 배관 구성 최적화를 위한 배관 내의 3차원 유동을 해석한 결과, 배관 내 가스 속도 벡타를 보면 관경이 큰 250A 주배관에서는 유속이 약 1.4m/sec에서 x축 방향으로 유체는 진행되면서 유속은 0.4m/sec 까지 점차적으로 감소하지만 분배관에서는 약 3m/sec 정도의 빠른 유속 특성을 보이고 있다. 이처럼 분배관에서 유속은 빠르게 형성되지만 분배관 30기에 전체적인 유속은 유사한 특성을 보이고 있다. 그리고 속도벡타에서 설명한 바와 같이 곡관에서 속도변화가 크게 형성되고 있지만 xy평면에서 주배관 유체 진행방향으로 속도분포를 보면 중심축을 기점으로 좌우 대칭을 이루고 있는 것을 확인할 수 있다. 이는 좌우 축대칭으로 설치된 분배관에 유속이 대칭 방향으로 유속은 고르게 형성될 수 있음 유추할 수 있다. 또한 주배관에서 유효동점도를 보면 강한 난류유동을 나타내는 주배관 상부부에서 높은 유효동점도를 나타내고 있고, 유속이 약해 층류적 흐름이 형성되는 주배관의 끝단부분에서 가장 높은 혼합길이 값을 보이고 있다.