20 여 가지의 형태의 제올라이트 중에서 8-membered ring (8 MR) 구조를 지닌 제올라이트를 다공성 지지층 위에 연속적인 분리막 형태로 제작하고자 한다. 이 때, 궁극적인 분리막의 사용처에 해당되는 배가스 및 바이오가스 조건에서 이산화탄소를 분리하는 데 적합하도록 설계한 제올라이트 분리막에 대해 기술하고자 한다. 특히, 10% 정도의 수분에 의한 악영향을 최소화할 수 있는 방법에 대해 발표하고자 한다.
In this study, the fragility for transmission tower subjected to wind disaster, which has the greatest influence on transmission tower, was developed for 154kV transmission tower located between Yangyang and Sokcho city. The resistance capacity and the limit state required for the evaluation of the fragility were divided into the major part and the auxiliary part in the steel tower. Moreover, the failure of tower was defined as the yielding stress of each member in the tower which could be used to determine their resistance performance. Domestic wind design guideline and criteria for transmission tower was used to determine the wind loads demand on the tower. By comparing the loading demand and resistance capacity, the failure of tower could be determined which in turn used to derive the wind fragility. The results obtained in this study could be used as a reference for damage prediction system of transmission tower and similar structures.
분자체(molecular sieve)로 알려진 제올라이트 분리막 중에 8-membered ring(8 MR) 구조를 지닌 제올라이트를 다공성 지지층 위에 연속적인 분리막 형태로 제작하고자 한다. 8 MR 구조 중에서도 소수성을 띠는 제올라이트 기반으로 높은 이산화탄소 선택적인 분리 능력을 보이고자 한다. 특히, 이산화탄소를 분자 크기가 큰 질소나 메탄으로부터 분리하는 게 아니라, 도전적인 과제로서 수분이 존재하는 feed 조건에서 높은 이산화탄소 분리 능력을 지닐 수 있도록 분리막을 제작하고자 한다. 이번 발표에서는 최근에 얻은 제올라이트 분리막을 만드는 방법과 그 방법으로 제작한 제올라이트 분리막의 이산화탄소 분리능력에 대해 발표하고자 한다.
A ZIF-8 membrane was prepared via counter diffusion method. To control the diffusion rate, two supports with different pore structure were employed, conventional and modified α-Al2O3 disc; disc A and disc B. The ZIF-8 membranes are derived their name from the supports; ZIF-8-A and ZIF-8-B. While ZIF-8-A was grown at the surface of the disc A, ZIF-8-B was grown inside the disc B. At 200°C, ZIF-8-A and -B exhibited H2/CO2 separation factor (SF) of 6.69 and 8.21. In long-term thermal stability tests, both ZIF-8-A and -B were withstood their properties at 200 and 250°C for 72 h. At 300°C, SF of ZIF-8-A fell after ~2 h, however, that of ZIF-8-B dropped after ~10 h. To sum up these features, ZIF-8-B showed higher H2 selectivity and thermal stability than ZIF-8-A, since ZIF-8 membrane was synthesized inside of the support.
Defects of zeolite membranes often lower their separation performance. Thus, the investigation of the defects is highly critical in achieving high separation performance. While general characterization methods (e.g. scanning electron microscopy; SEM) that examine the membrane surface cannot detect defects, the FCOM measurement is able to identify the defective structure inside the zeolite membrane using dye molecules of appropriate size [1]. In this work, various dyeing conditions (times and concentrations) were applied to a MFI zeolite membrane in an attempt to investigate the defective structure. Furthermore, the quantitative analysis is practiced to measure the defects in numerical form.
An all-silica deca-dodecasil 3R (Si-DDR) zeolite with a pore size of 0.36*0.44 nm2 is highly desirable for membrane-based separation of CO2 from N2, which critical in the post-combustion carbon capture process, via molecular recognition of their slight size difference. For the first time, we acquired h0h-oriented, hydrophobic DDR zeolite films through epitaxial growth of a DDR seed layer with a structure directing agent of methyltropinium iodide. The degree of the out-of-plane orientation and inter-growth was increased with the secondary growth time, while reducing the defects that provide non-selective pathways. The resulting DDR membrane showed a CO2/N2 separation factor (SF) as high as 11.9 at 50°C under dry conditions. More desirably, it could achieve a much enhanced CO2/N2 SF of up to 15.9 at 50°C in the presence of H2O vapor.
분자체(molecular sieve)로 알려진 제올라이트 분리막 중에 8-membered ring (MR) 구조를 지닌 제올라이트를 연속적인 분리막 형태로 제작하고자 한다. 8 MR 구조 중에서도 DDR 유형의 제오라이트 기반으로 이산화탄소에 대해 분자체 역할을 할 수 있는 분리막으로 사용할 수 있음을 보이고자 한다. 단순히 이산화탄소를 다른 분자 크기가 큰 질소나 메탄으로부터 분리하는 게 아니라, 도전적인 과제로서 수분이 존재하는 feed 조건에서 높은 이산화탄소 분리 능력을 지닐 수 있도록 분리막을 제작하고자 한다. 이번 발표에서는 최근에 얻은 DDR 유형 제올라이트 분리막을 만드는 방법과 그 분리막의 이산화탄소 분리 능력에 대해 발표하고자 한다.
분자체(molecular sieve)로 알려진 제올라이트 분리막 중에 8-membered ring 구조를 지닌 제올라이트를 연속적인 분리막 형태로 제작하고자 한다. 이를 통해 영구 기체 분자간의 크기 차이를 기반으로 한 분자체 역할을 할 수 있는 분리막으로 사용하고자 한다. 이렇게 얻은 연속적인 분리막을 이용하여 석탄기반의 화력발전소에서 발생하는 배가스 내에 존재하는 이산화탄소를 효과적으로 분리·포집하려고 한다. 도전적인 과제로서 수분이 존재하는 상황에서도 높은 이산화탄소/질소 분리 능력을 지닐 수 있도록 분리막을 제작하고자 한다. 이번 발표에서는 최근에 얻은 제올라이트 분리막 기반의 이산화탄소 포집 능력과 관련된 내용에 대해 발표하고자 한다.
Recently, the damage caused by typhoons and strong winds, which frequently occur as a result of global climate change, is on the rise. Soundproofing and windshield walls installed on roads often fail to function because of damage due to strong winds. Therefore, in this study, strong wind fragility evaluation was performed to predict the probability of failure of soundproof / windproof walls from wind loads. A three-node bending experiment was carried out to investigate the material characteristics of the aluminum frame which was installed on the actual soundproof wall. Based on the results of this experiment, the resistance performance of target structure was calculated, and the frame damage was selected as the performance limit state. Wind loads acting on 4m x 1m individual element soundproof wall was compared with the resistance capacity by Monte Carlo simulation method. In the future, the evaluation of the strong wind safety of the sound barrier structure should be proceeded by setting the limit state and performing the vulnerability evaluation through the additional experimental data. This work can become guideline information for future design of soundproof and windproof wall.
Recently, the damage caused by typhoons and strong winds frequently displayed according to world climate change tends to be increasing. In the case of soundproof / windproof wall installed on the road, frequent occurrence does function for damage due to strong wind. As a result, in this study, strong wind fragility evaluation was performed to predict the degree of damage of strong winds of soundproof / windproof walls. We were conducting research focusing on the destruction mode in which the overall destruction of the sound barrier caused by the destruction of the aluminum frame occurs. Three node bending experiments were conducting for grasping the material properties of a soundproof wall aluminum frame that is currently being constructed on a road. Based on the results of this experiment, the resistance performance of the target structure was calculated, the frame breakage was selected as the limit state, and the wind load acting on the simplified soundproof wall model was measured using the Monte Carlo model model technique to measure.From now on, through the additional study, it will be necessary to proceed with a more accurate evaluation of the safety against strong windsof the soundproof wall structure using the vulnerability evaluation execution and the setting of the limit state.This study is expected to be the basic data of the study on prediction technique of wind - induced damage of soundproofing and windshield walls in the future.
분자체(molecular sieve)로 알려진 제올라이트 분리막 중에 8-membered ring 구조를 지닌 제올라이트를 연속적인 film 형태로 제작하여 분자체 역할을 할 수 있는 분리막으로 사용하고자 한다. 이 분리막을 이용하여 석탄기 반의 화력발전소에서 발생하는 배가스 내에 존재하는 이산화탄소를 효과적으로 분리⋅포집하려고 한다. 높은 이산화탄소/질소 분리 성능을 확보하는 목표를 바탕으로 제올라이트 분리막을 제작하고 있으며, 특히 수분이 존재하는 상황에서 높은 이산화탄소/질소 분리 능력을 지닐 수 있도록 분리막을 제작하고자 한다. 이번 발표에서는 최신 결과 위주로 이산화탄소 포집 능력과 관련된 내용을 발표하고자 한다.