PURPOSES: This study aimed to analyze traffic accidents at circular intersections, and discuss accident reduction strategies based on land use and vehicle type. METHODS : Traffic accident data from 2010 to 2014 were collected from the “traffic accident analysis system”(TAAS) data set of the Road Traffic Authority. To develop the accident rate model, a multiple linear regression model was used. Explanatory variables such as geometry and traffic volume were used to develop the models. RESULTS: The main results of the study are as follows. First, it was found that the null hypotheses that land use and vehicle type do not affect the accident rate should be rejected. Second, 16 accident rate models, which are statistically significant (with high R2 values), were developed. Finally, the area of the central island, number of speed humps, entry lane width, circulatory roadway width, bus stops, and pedestrian crossings were analyzed to determine their effect on accidents according to the type of land use and vehicle. CONCLUSIONS: Through the developed accident rate models, it was revealed that the accident factors at circular intersections changed depending on land use and vehicle type. Thus, selecting the appropriate location of bus stops for trucks, widening entry lanes for cars, and installing splitter islands and optimal lighting for motorcycles were determined to be important for reducing the accident rate. Additionally, the evaluation showed that commercial and mixed land use had a weaker effect on accidents than residential land use.