Particle size reduction is an important step in many technological operations. The process itself is defined as the mechanical breakdown of solids into smaller particles to increase the surface area and induce defects in solids, which are needed for subsequent operations such as chemical reactions. To fabricate nano-sized particles, several tens to hundreds of micron size ceramic beads, formed through high energy milling process, are required. To minimize the contamination effects during highenergy milling, the mechanical properties of zirconia beads are very important. Generally, the mechanical properties of Y2O3 stabilized tetragonal zirconia beads are closely related to the mechanism of phase change from tetragonal to monoclinic phase via external mechanical forces. Therefore, Y2O3 distribution in the sintered zirconia beads must also be closely related with the mechanical properties of the beads. In this work, commercially available 100μm-size beads are analyzed from the point of view of microstructure, composition homogeneity (especially for Y2O3), mechanical properties, and attrition rate.