논문 상세보기

베타-이항분포의 공액성을 근거로 한 유한 모집단의 신뢰성 입증 시험

Reliability Demonstration Test For a Finite Population Based on the Conjugacy of the Beta-Binomial Distribution

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/352970
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국산업경영시스템학회 (Society of Korea Industrial and Systems Engineering)
초록

We want to accept or reject a finite population with reliability demonstration test. In this paper, we will describe Bayesian approaches for the reliability demonstration test based on the samples from a finite population. The Bayesian method is an approach that prior distribution and likelihood function combine to from posterior distribution. When we select somethings in a samples, we consider hypergeometric distribution. In this paper, we will explain the conjugacy of the beta-binomial distribution and hypergeometric distribution. The purpose of this paper is to make a decision between accept and reject in a finite population based on the conjugacy of the beta-binomial distribution.

목차
Abstract
 1. 서론
 2. 본론
  2.1 유한 모집단의 신뢰성 입증 시험
  2.2 베타-이항분포와 초기하분포의 공액성
  2.3 축차 샘플링(sequential sampling)
 3. 수치예제
 4. 결론
 참고문헌
저자
  • 전종선(한양대학교 산업경영공학과)
  • 안선응(한양대학교 산업경영공학과)