Decision-Making based on Uncertain Information in a Beer Distribution Game Using the Taguchi Method
Information is known to be a key element for the successful operation of a supply chain, which is required of the efficient ordering strategies and accurate predictions of demands. This study proposes a method to effectively utilize the meteorological forecast information in order to make decisions about ordering and prediction of demands by using the Taguchi experimental design. It is supposed that each echelon in a supply chain determines the order quantity with the prediction of precipitation in the next day based on probability forecast information. The precipitation event is predicted when the probability of the precipitation exceeds a chosen threshold. Accordingly, the choice of the threshold affect the performances of a supply chain. The Taguchi method is adopted to deduce a set of thresholds for echelons which is least sensitive to changes in environmental conditions, such as variability of demand distributions and production periods. A simulation of the beer distribution game was conducted to show that the set of thresholds found by the Taguchi method can reduce the cumulative chain cost, which consists of inventory and backlog costs.