The study was performed to explore the molecular changes in the vegetative stage (3-and 5-leaf) of sorghum under waterlogging stress. A total of 74 differentially expressed protein spots were analyzed using LTQ-FT-ICR MS. Among them, 12 proteins were up-regulated and 3 proteins were down-regulated. Mass spectrometry (MS) results showed that about 50% of the proteins involved in various metabolic processes. The level of protein expression of malate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase related to carbohydrate metabolic process increased in both 3 and 5-leaf stage under waterlogging stress. These proteins are known to function as antistress agents against waterlogging stress. The expression of oxygen-evolving enhancer protein 1 protein related to photosynthesis was slightly increased in the treated group than in the control group, however the expression level was increased in the 5-leaf stage compared to the 3-leaf stage. Probable phospholipid hydroperoxide glutathione peroxidase protein and superoxide dismutase protein related to response to oxidative stress showed the highest expression level in 5-leaf stage treatment. This suggests that the production of reactive oxygen species by the waterlogging stress was the most abundant in the 5-leaf treatment group, and the expression of the antioxidant defense protein was increased.