Bayesian 추론기법을 활용한 레이더 반사도-강우강도 관계식 매개변수의 불확실성 정량적 평가
최근 기후변동성으로 유발되는 불안정한 기상상태를 효과적으로 관측하고자 레이더가 도입되고 있다. 레이더는 경험식으로 산정된 Z-R 관계식을 통하여 레이더 강우량을 제시하게 된다. 이 과정에서 레이더 강우량은 필연적으로 지상에 도달하는 실제 강우량과는 정량적 오차가 발생하게 된다. 본 연구는 확률통계학적 방법론을 이용하여 Z-R 관계식 매개변수 산정과정에서 우리나라의 강우특성을 고려함과 동시에 Z-R 관계식 매개변수의 불확실성을 정량적으로 제시하고자 한다. 강우의 계절성을 고려하여 Z-R 관계식 매개변수를 추정하는 과정에서 Bayesian 추론기법을 도입하여 생산된 레이더 강우량은 기존의 Z-R 관계식에 비하여 개선된 통계적 효율기준을 제시하였다. 따라서 Bayesian 추론기법을 활용한 Z-R 관계식 매개변수 산정은 정량적으로 신뢰성 있는 고해상도 강우정보의 생산은 고도화된 수문해석 및 기상예보 지원을 가능케 할 것으로 판단된다.
Recently, weather radar system has been widely used for effectively monitoring near real-time weather conditions. The radar rainfall estimates are generally relies on the Z-R equation that is an indirect approximation of the empirical relationship. In this regards, the bias in the radar rainfall estimates can be affected by spatial-temporal variations in the radar profile. This study evaluates the uncertainty of the Z-R relationship while considering the rainfall types in the process of estimating the parameters of the Z-R equation in the context of stochastic approach. The radar rainfall estimates based on the Bayesian inference technique appears to be effective in terms of reduction in bias for a given season. The derived Z-R equation using Bayesian model enables us to better represent the hydrological process in the rainfall-runoff model and provide a more reliable forecast.