The adsorption of lithium ion onto zeolite was investigated depending on contact time, initial concentration, cation forms, pH, and adsorption isotherms by employing batch adsorption experiment. The zeolite was converted into different forms such K+, Na+, Mg2+, Ca2+, and Al3+. The zeolite had the higher adsorption capacity of lithium ion in K+ form followed by Na+, Ca2+, Mg2+, and Al3+ forms, which was in accordance with their elctronegativities. The lithium ion adsorption was explained using the Langmuir, Freundlich, and Dubinin-Radushkevich adsorption isotherms and kinetic models. Adsorption rate of lithium ion by zeolite modified in K+ form was controlled by pseudo-second-order and particle diffusion kinetic models. The maximum adsorption capacity obtained from Langmuir isotherm was 17.0 mg/g for zeolite modified in K+ form. The solution pH influenced significantly the lithium ions adsorption capacity and best results were obtained at pH 5-10.