The adsorption characteristics of the methylene blue (MB) were studied using three activated carbons such as ACA and ACB with similar specific surface area (1,185 and 1,105 m2/g), and ACC with relatively high specific surface area (1,760 m2/g). The surface chemical properties of these activated carbons were investigated by X-ray photoelectron spectroscopy (XPS). The results indicated that ACA had more functional groups (with phenol, carbonyl, and carboxyl etc.) than ACB (with carbonyl and carboxyl) and ACC (with carboxyl). The isotherm data were fitted well by Langmuir isotherm model. The adsorption capacities of ACA, ACB, and ACC for MB were 454.7 mg/g, 337.7 mg/g, and 414.0 mg/g, respectively. As phenol and carboxyl content of the surface on activated carbon increased, MB adsorption capacity was increased. Although ACA had a smaller specific surface area than ACC, the content of phenol and carboxyl group was abundant, so MB adsorption capacity was found to be higher than ACC.