In order to clarify the impact of regional warming on the meteorological field and air quality over southeastern part of Korean Peninsula, several numerical experiment were carried out. Numerical models used in this study are WRF for the estimate the meteorological elements and CMAQ for assessment of ozone concentration. According to the global warming impact, initial air temperature were changed and its warming rate reach at 2 degree which was based on the global warming scenarios provided by IPCC. The experiments considering the global warming at initial stage were presented as case T_UP. Air temperature over inland area during night time for case T_UP is higher than that for Base case. During time since the higher temperature over inland area is maintained during daytime more intensified sea breeze should be induced and also decrease the air temperature in vicinity of coast area. In case of T_UP, high level concentrations ozone distribution area was narrowed and their disappearance were faster after 1800LST. As a results, wind and temperature fields due to the global warming at initial stage mainly results in the pattern of ozone concentration and its temporal variation at South-Eastern Part of the Korean Peninsula.