The hydrolytic kinetics of biodegradable poly(l-lactide) (PLLA) have been studied by using two model systems, solution-grown single crystal (SC) and Langmuir monolayer techniques, for elucidating the mechanism for both alkaline and enzymatic degradations. The present study investigated the parameters such as degradation medium and time. The Langmuir monolayers of PLLA showed faster rates of hydrolysis when they were exposed to a basic subphase rather than they did when exposed to neutral subphase. Both degradation mediums had moderate concentrations to show a maximized activity, depending on their sizes. An alkaline degradation of SCs of PLLA showed the decrease of molecular weight of the remained crystals due to the erosion of chain-folding surface. However, the enzymatic degradation of SCs of PLLA occurred in the crystal edges thus the molecular weight of remained crystals was not changed. This behavior might be attributed to the size of enzymes which is much larger than that of alkaline ions; that is, the enzymes need larger contact area with monolayers to be activated.