Oxidative TCE decomposition over TiO2-supported single and complex metal oxide catalysts has been conducted using a continuous flow type fixed-bed reactor system. Different types of commercial TiO2 were used for obtaining the supported catalysts via an incipient wetness technique. Among a variety of titanias and metal oxides used, a DT51D TiO2 and CrOx would be the respective promising support and active ingredient for the oxidative TCE decomposition. The TiO2-based CrOx catalyst gave a significant dependence of the catalytic activity in TCE oxidation reaction on the metal loadings. The use of high CrOx contents for preparing CrOx/TiO2 catalysts might produce Cr2O3 crystallites on the surface of TiO2, thereby decreasing catalytic performance in the oxidative decomposition at low reaction temperatures. Supported CrOx-based bimetallic oxide systems offered a very useful approach to lower the CrOx amounts without any loss in their catalytic activity for the catalytic TCE oxidation and to minimize the formation of Cl-containing organic products in the course of the catalytic reaction.