A Green Approach to Synthesize Zinc oxide Nanoparticles from Abeliophyllum distichum and Their Biological Application
Background : Among medicinal plant sources, Abeliophyllum distichum is widely used in traditional Korean medicine. we report on the synthesis of nanostructured zinc oxide particles by both chemical and biological method. Highly stable and spherical zinc oxide nanoparticles are produced by using zinc nitrate and Abeliophyllum distichum leaf extract.
Methods and Results : Zinc oxide (Ad-ZnONPs) nanoparticles synthesized from Abeliophyllum distichum at room temperature by aqueous extract of dried leaf and stem. The plant endemic in Korea alone and it is a monotypic flowering plant genus of olive family, Oleaceae. Catalytic and toxicity effect against human keratinocyte and adenocarcninomic human alveoloar. Ultra violet visible (UV-Vis) spectroscopy, field emission transmission electron microscopy (FE-TEM), energy-dispersive X-ray (EDX) spectroscopy, elemental mapping, X-Ray powder diffraction (XRD), selected area electron diffraction (SAED) and Fourier transform infrared (FTIR) spectroscopy were engaged to illustrate the biosynthesized nanoparticles. The Zn-AdNPs has the ability in catalytic action and the cytotoxicity agent against different cell lines as investigated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium bromide (MTT) assay
Conclusion : The present studies reveals that facile approaching the biological synthesis of zinc oxide nanoparticles by using the A. distichum leaf and stem extract, which is revealed that recyclable method. The method is well suited for the green synthesis and dual function molecule as reducing agent and stabilizing agent for synthesis of nanoparticles. The nanoparticles also showing promising biological activities.