Background : Narcissus tazetta (N. tazetta), belonging to the Amaryllidaceae family, is a bulbous plant distributed in Korea, China, and Japan. Amaryllidaceae family plants contained galantamine exhibiting dominant and selective acetylcholinesterase inhibition. In this study, transcriptome analysis of N. tazetta was carried out.
Methods and Results : The results of studies conducted in duplicate revealed the presence of a total of 305,228 and 370,567 unigenes, acquired from 69,605,788 and 59,770,506 raw reads, respectively, after trimming the raw reads using CutAdapt, assembly using Trinity package, and clustering using CD-Hit-EST. The resulting unigenes were annotated based on the NCBI Non-redundant protein database, as N. tazetta is genetically closer to Phoenix dactylifera and Elaeis guineensis. The unigenes of N. tazetta were clustered into three major categories: biological processes, cellular components, and molecular functions, with 51 functional sections. A large number of unigenes (11,371 and 15,535 from replicates 1 and 2, respectively) were categorized in the biological process cluster, followed by the cellular component cluster, and the molecular function cluster. With respect to the biological process category, the unigenes were assigned to 23 functional sections. The majority of unigenes were involved in cellular processes. Among the unigenes clustered as the cellular component with 14 sections, most genes were associated with the cell and cell parts. Furthermore, 156,584 and 201,353 unigenes, respectively, matched the molecular function cluster with 14 sections, of which most unigenes were related to metabolic process and cellular process.
Conclusion : This study provides functional information of N. tazetta and highlights the use of the Illumina platform for transcriptome research.