Waste water-soluble cutting oil was treated with W1 type #1 and W1 type #2. The properties of the original water-soluble cutting oil were pH=10.4, viscosity=1.4cP, CODcr=44,750 ppm, and TOC=10,569 ppm. However, the properties of the oil used for more than 3 months were changed to pH=7.82, viscosity=2.1cP, CODcr=151,000 ppm, and TOC=74,556 ppm. It might be attributed to the fact that molecular chains were cut due to thermal oxidation and impurities such as metal chips were incorporated in to the oil during the operation processes. To prevent the putrefaction of oil, the sterilization effect of ozone and UV on the microorganism in the oil was investigated. Ozone treatment showed that 99.99% of the microorganism was annihilated with 30 minutes contact time and 60 minutes were necessary for the same effect when UV was used. Ozone treatment could cut molecular chains of the oil due to strong sterilization power, which was evidenced by the increase of TOC from 25,132 ppm at instantaneous contact to 28,888 ppm at 30 minutes contact time. However, UV treatment didn't show severe changes in TOC values and thus, seemed to cause of severe cut of molecular chains. When the activated carbon was used to treat the waste water-soluble cutting oil, TOC decreased to 25,417 ppm with 0.1g carbon and to 15,946 ppm with 5.0g carbon. This results indicated that the waste oil of small molecular chains could be eliminated by adsorption. From the results, it could be concluded that these treatment techniques could be proposed to remove the waste oil of small molecular chains resulting in the degradation of the oil properties. In addition, these experimental results could be used for the correlation with future works such as investigation of the molecular distribution according to the sizes, lengths, and molecular weight of the chains.