논문 상세보기

AI기법의 Q-Learning을 이용한 최적 퇴선 경로 산출 연구 KCI 등재

Optimum Evacuation Route Calculation Using AI Q-Learning

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/365526
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
해양환경안전학회지 (Journal of the Korean Society of Marine Environment and Safety)
해양환경안전학회 (The Korean Society Of Marine Environment & Safety)
초록

선박은 해양사고 발생 시 최악의 경우 퇴선을 해야 하나 특성상 협소하고 복잡하며 해상에서 운항하므로 퇴선이 쉽지 않다. 특히, 여객선의 경우 해상에서의 안전훈련을 이수하지 않은 불특정 다수의 승객들로 인해 더욱 퇴선이 어려운 상황이 된다. 이런 경우 승무원들의 피난 유도가 상당히 중요한 역할을 하게 된다. 그리고 구조자가 사고 선박에 진입하여 구조 활동을 하는 경우 어느 구역으로 진입해야 가장 효과적인지에 대한 검토가 필요하다. 일반적으로 승무원 및 구조자는 최단경로를 택하여 이동하는 것이 일반적이나 최단 경로에 사고 상황 등이 발생했을 경우 제2의 최적 경로 선택이 필요하다. 이러한 상황을 해결하기 위해 이 연구에서는 머신러닝(Machine learning)의 기법 중에 하나인 강화학습(Reinforcement Learning)의 Q-Learning 이용하여 퇴선 경로를 산출하고자 한다. 강화학습은 인공지능(Artificial Intelligence)의 가장 핵심적인 기능으로 현재 여러 분야에 사용되고 있다. 현재까지 개발된 대부분의 피난분석 프로그램은 최단경로를 탐색하는 기법을 사용하고 있다. 이 연구에서는 최단경로가 아닌 최적경로를 분석하기 위해 머신러닝의 강화학습 기법을 이용하였다. 향후 AI기법인 머신러닝은 자율운항선박의 최적항로 선정 및 위험요소 회피 등 다양한 해양관련 산업에 적용 가능할 것이다.

In the worst maritime accidents, people should abandon ship, but ship structures are narrow and complex and operation takes place on rough seas, so escape is not easy. In particular, passengers on cruise ships are untrained and varied, making evacuation prospects worse. In such a case, the evacuation management of the crew plays a very important role. If a rescuer enters a ship at distress and conducts rescue activities, which zones represent the most effective entry should be examined. Generally, crew and rescuers take the shortest route, but if an accident occurs along the shortest route, it is necessary to select the second-best alternative. To solve this situation, this study aims to calculate evacuation routes using Q-Learning of Reinforcement Learning, which is a machine learning technique. Reinforcement learning is one of the most important functions of artificial intelligence and is currently used in many fields. Most evacuation analysis programs developed so far use the shortest path search method. For this reason, this study explored optimal paths using reinforcement learning. In the future, machine learning techniques will be applicable to various marine-related industries for such purposes as the selection of optimal routes for autonomous vessels and risk avoidance.

목차
요 약
 Abstract
 1. 서 론
 2. 경로산출 도구
 3. 퇴선 경로 산출 방법
 4. 결 론
 References
저자
  • 김원욱(한국해양수산연수원) | Won-Ouk Kim (Korea Institute of Maritime and Fisheries Technology)
  • 김대희((주)삼우이머션) | Dae-Hee Kim (SAMWOOimmersion Co., Ltd,)
  • 윤대근(목포해양대학교) | Dae-Gwun Youn (Mokpo National Maritime University) Corresponding Author