This study evaluates how three AI models—ChatGPT, DeepSeek, and Clova X—detect and respond to gender-biased expressions in Korean. Clova X exhibited the highest accuracy in identifying discriminatory language, followed by ChatGPT, while DeepSeek performed the poorest. While terms like “kimchi girl” and “doenjang girl” were correctly recognized, phrases such as “female doctor” and “maiden work” were often misinterpreted. ChatGPT and DeepSeek occasionally provided inaccurate definitions, raising concerns about misinformation. Interestingly, DeepSeek performed best when interpreting sexist proverbs, although the overall differences across models were minor. All three models generally succeeded in recognizing biased expressions in conversational contexts, but DeepSeek struggled with non-standard sentence formats, leading to delays or missing responses. These results reveal current limitations in generative AI’s ability to process culturally specific and nuanced language. This study emphasized the need to incorporate more diverse Korean language data and up-to-date linguistic research in AI training. As generative AI tools become more integrated into everyday communication, improving their ability to detect and respond to gender biases is crucial for fostering fair and responsible language technologies.
교육 분야에서 생성형 인공지능 기술의 보급과 함께 중국 고등학생의 이용의도의 영향 요인에 관한 분석은 이론적 및 실무적 의의가 있다. 본 연구의 목적은 중국 고등학교 교육 환경에 적합한 모형을 구축하고 이용 의도의 영향 요인을 분석함으로써 교육 분야의 인공지능 응용을 위한 근 거 자료를 제공하는 데 있다. 정보시스템 성공 모형, UTAUT 모형과 사 회적 인지 이론을 기반으로 사회적 영향, 자기효능감, 신뢰, 의인화, 경 제적 저항과 관습적 저항 등을 활용하여 만족도와 이용의도를 포함한 모 형을 구축했다. 설문조사와 구조방정식 모델을 통해 실증분석을 진행했 다. 연구 결과에 따르면, 첫째 시스템 품질, 정보 품질과 서비스 품질은 만족도에 긍정적인 영향을 미쳤다. 둘째, 사회적 영향과 신뢰는 교사, 학 부모, 또래집단과 학교 규범을 통해 만족도를 높일 수 있다. 셋째, 자기 효능감, 의인화와 만족도는 이용의도에 긍정적인 영향을 미쳤으며 의인 화가 가장 큰 영향을 미쳤다. 넷째, 경제적 저항과 관습적 저항은 만족도 와 이용의도에 각각 부정적인 영향을 미쳤다. 본 연구는 고등학생 집단 을 대상으로 정보시스템 성공 모형의 적합성을 검증하고 감정적 및 문화 적 요소를 도입하여 교육 기술 수용 관련 연구 모형을 구축했다. 실무적 시사점으로 첫째, 시스템 성능과 감정적 인터랙티브 디자인을 최적화한 다. 둘째, 교사와 학부모의 영향을 강화하고 긍정적인 이용 분위기를 조 성한다. 셋째, 이용 장벽을 낮추고 교육 자원의 보급성을 높인다.
본 연구는 인공지능(AI) 기술의 발전이 음원 제작 시스템에 미치는 영향을 중심으로, 작곡, 편 곡, 믹싱, 마스터링의 핵심 제작 단계에서 인공지능 기술이 어떻게 적용되고 있는지를 체계적으로 분석하였다. 특히 뮤즈넷(MuseNet), 마젠타(Magenta), 수노(SUNO), 아이바(AIVA) 등 대표적인 인 공지능 작곡 도구의 기술 구조와 기능을 시대별로 비교함으로써, 음악 창작의 자동화 수준과 기술 적 한계를 실증적으로 조명하였다. 또한 하이브(HYBE), 에스엠(SM), 와이지(YG) 등 국내 주요 엔 터테인먼트 기업의 인공지능 기술 수용 사례를 통해, 산업 현장에서의 실제 활용 방식과 그로 인 한 제작 및 유통 시스템의 변화 양상을 분석하였다. 연구 결과, 인공지능은 음원 제작의 효율성과 확장성을 획기적으로 높이는 동시에, 콘텐츠 생산 방식과 산업 구조의 재편을 촉진하는 주요 요인 으로 작용하고 있음을 확인하였다. 본 연구는 이러한 변화를 바탕으로 향후 음악 산업이 나아가야 할 기술 통합 전략과 대응 방향에 대해 제언하고자 한다.
이 연구는 노암 촘스키(Noam Chomsky)의 인공지능에 대한 비판적 시각과 이를 둘러싼 기술철학적 논의를 다룬다. 촘스키는 AI 시스템, 특 히 챗GPT와 같은 머신러닝 프로그램이 인간의 사고와 언어 사용 방식과 는 본질적으로 다르며, 인과적 설명을 생성하는 능력이 결여되어 있다고 주장한다. 그는 AI가 단순히 패턴 인식과 예측을 기반으로 작동하기 때 문에 진정한 지능을 지니고 있지 않다고 강조한다. 하지만, 이 논문은 AI와 인간 지능의 유사점과 윤리적 주체성 가능성을 칸트 철학과 연계하 여 촘스키의 주장을 반박하고자 한다. 챗GPT와 같은 인공지능 시스템은 인간의 뇌 구조와 기능을 모방한 딥러닝 모델을 사용한다. 이 모델은 다 층 신경망 구조를 통해 정보를 처리하며, 이는 인간 뇌의 뉴런 구조와 유사하다. 챗GPT는 문맥 이해, 기억, 학습 능력을 보여주며, 이는 인간 의 인지 과정과 비슷하다. 머신러닝 모델과 인간 뇌 사이에는 여전히 차 이가 있지만, 신경망칩 등 기술의 발전으로 그 간극이 좁혀지고 있다. 인 공지능의 인과 메커니즘은 인간의 두뇌나 학습 활동과 명확히 구별하기 어려워지고 있기에, AI가 인간과 유사한 학습 및 윤리적 행동을 보여줄 수 있음을 통해 자의식을 가질 수 있음을 밝히고자 한다.
Given the hazards posed by black ice, it is crucial to investigate the conditions that contribute to its formation. Two ensemble machinelearning algorithms, Random Forest (RF) and Extreme Gradient Boosting (XGBoost), were employed to forecast the occurrence of black ice using atmospheric data. Additionally, explainable artificial intelligence techniques, including Feature Importance (FI) and partial dependence Plot (PDP), were utilized to identify atmospheric conditions that significantly increase the likelihood of black ice formation. The machinelearning algorithms achieved a forecasting accuracy of 90%, demonstrating reliable performance. FI analysis revealed distinct key predictors between the algorithms: relative humidity was the most critical for RF, whereas wind speed was paramount for XGBoost. The PDP analysis identified the specific atmospheric conditions under which black ice was likely to form. This study provides detailed insights into the atmospheric precursors of frost/fog-induced black ice formation. These findings enable road managers to implement proactive winter road maintenance strategies, such as optimizing anti-icing patrol routes and displaying warnings on various message signs, thereby enhancing road safety.
본고는 미국 대외정책의 맥락에서 트럼프 2기 행정부의 AI 정책 방향 을 보다 체계적으로 조망해볼 필요가 있다는 문제의식에서 출발한다. 미 대통령이 정책 방향을 제시할 때 활용하는 대표적 수단은 연두교서와 대 통령 행정명령(Executive Order)이다. 특히 트럼프 1기 행정부 초반 3 년간 서명한 행정명령이 137건에 이를 정도로 트럼프 대통령은 행정명령 을 적극적으로 활용했다. 아울러 국가안보전략(NSS)과 같이, 대통령실 차원에서 발표되는 전략문서도 미 정부의 정책방향을 파악하는데 도움이 된다. 트럼프 1기 행정부 대통령 및 대통령실 차원에서의 AI 관련 내용 을 담은 문서로서는 우선 백악관 명의로 발표된 국가안보전략(2017.12.) 이 있다. 동 전략은 미국의 번영과 안보라는 측면에서 AI 이슈를 언급하 였다. 2019년 2월 발표된 연두교서에서 트럼프 대통령은 미래 첨단 산업 투자의 중요성을 역설하였다. 같은 달 트럼프 대통령은 AI 관련 행정명 령 제13859호를, 대통령실 과학기술정책실(OSTP)은 동 행정명령에 기초 해 “미국 AI 이니셔티브(American AI Initiative)”를 발표했다. 이후 2019년 6월 대통령실 산하 국가과학기술위원회는 “국가 AI R&D 전략계 획"을 발표했다. 이 일련의 문서들은 '미국 우선주의'에 기초하여, AI 분 야의 정책을 구체화해 나간다는 동일한 맥락 속에 있다. 상기 1기 트럼 프 행정부의 AI 정책 관련 문서를 검토한 본고의 논의는, 2기 트럼프 행 정부의 AI 정책을 조망하는데 함의를 제공한다.
본 연구는 기술수용모델(TAM), 컴퓨터 사회적 행위자 이론(CASA), 그 리고 자극-유기체-반응(S-O-R) 모델을 종합적으로 활용하여, AI 기반 디지털 휴먼 투어 가이드의 ‘신기술적 속성’과 ‘사회적 행위자 특성’이 문화관광 맥락에서 방문객의 감정적 경험 및 문화적 정체성 형성에 어떻 게 작용하는지를 규명하였다. 이를 위해 현장 조사와 온라인 설문을 통 해 총 436부의 유효 표본을 확보하고, 구조방정식 모형과 매개분석을 실 시하였다. 연구 결과, 지각된 기술적 새로움(technological novelty), 신 뢰도(credibility), 인간적 특성(anthropomorphism), 그리고 행위성 (agency)은 모두 방문객의 감정적 경험을 유의미하게 높이는 것으로 나 타났으며, 이는 직·간접적으로 문화적 정체성을 강화하는 데 기여하였다. 반면 지각된 지능적 우위(intelligent advantage)는 통계적으로 유의한 영향이 확인되지 않아, 경험 중심의 맥락에서는 순수하게 합리적인 기술 적 특성만으로는 충분한 방문객 공감을 이끌어내기 어렵다는 점이 시사 되었다. 본 연구는 S-O-R 모델 내에서 감정적 경험의 매개 역할을 부각 함으로써, TAM 및 CASA 이론의 적용 범위를 확장하였다. 또한 실무적 으로는 AI 기반 투어 가이드 디자인 시 새로움, 신뢰도, 인간적 특성, 그 리고 상호작용적 행위성을 강조함으로써 방문객의 감정적 몰입과 문화적 태도를 제고할 수 있음을 제안한다.
This study aims to improve the interpretability and transparency of forecasting results by applying an explainable AI technique to corporate default prediction models. In particular, the research addresses the challenges of data imbalance and the economic cost asymmetry of forecast errors. To tackle these issues, predictive performance was analyzed using the SMOTE-ENN imbalance sampling technique and a cost-sensitive learning approach. The main findings of the study are as follows. First, the four machine learning models used in this study (Logistic Regression, Random Forest, XGBoost, and CatBoost) produced significantly different evaluation results depending on the degree of asymmetry in forecast error costs between imbalance classes and the performance metrics applied. Second, XGBoost and CatBoost showed good predictive performance when considering variations in prediction cost asymmetry and diverse evaluation metrics. In particular, XGBoost showed the smallest gap between the actual default rate and the default judgment rate, highlighting its robustness in handling class imbalance and prediction cost asymmetry. Third, SHAP analysis revealed that total assets, net income to total assets, operating income to total assets, financial liability to total assets, and the retained earnings ratio were the most influential factors in predicting defaults. The significance of this study lies in its comprehensive evaluation of predictive performance of various ML models under class imbalance and cost asymmetry in forecast errors. Additionally, it demonstrates how explainable AI techniques can enhance the transparency and reliability of corporate default prediction models.
생성형 인공지능의 급속한 발전은 사회 전반에 광범위한 영향을 미치며, 일상생활을 포함한 다양한 분야 에 활용되고 있다. 본 연구에서는 인공지능 기술의 발전 동향을 대규모 언어모델(Large Language Models, LLM)을 중심으로 살펴보고 생성형 인공지능 기반 솔루션이 정치 및 공공 부문의 효율성과 서비스 최적화 에 기여하고 있음을 확인하였다. 본 연구는 미국, 싱가포르, 인도 등의 사례분석을 통해 인공지능 도구가 선거의 확장성과 시민과의 상호작용 개선에 역할 할 수 있다는 것을 주장한다. 동시에, 대규모 언어모델의 실사용 과정에서 제기되는 편향성, 허위정보 확산, 규제 공백 등의 쟁점들을 고찰할 필요가 있음을 지적한 다. 요컨대, 생성형 인공지능은 민주주의 발전과 공공서비스 증진에 대한 가능성을 제공하지만, 기술의 지속 가능하고 적실한 활용을 위해 투명성, 공정성과 책임성을 고려한 사용이 요구된다.
In general, optimized pavement thickness design abilities and reliable construction procedures have been considered being crucial element for expressway in South Korea till millenium. However, after 2005, a proper management efforts on existing expressway became recognized as an important factor after 2,005. One of good example is rising attention of HPMS(Highway Pavement Management System). In HPMS, the crucial component is: surveying the existing expressway surface condition with reasonable, reliable and efficient procedure. Becasue of this reason, application of various advanced and sophisticated technologies on HPMS area were considered since 2010. During this time, many advanced technologies such as AI(Artificial Intelligence) techniques and corresponding physical equipment were considered to be applied. Through application of AI technologies in HPMS business area, two major outcomes can be achieved: first one is an automated pavement surface monitoring work system for maximized efficiency and second thing is saving current HPMS management budget through faster and more reasonable surveying results. In this paper, the feasibility of AI technology on actual pavement surface monitoring and analysis procedure was considered. As a result, AI based pavement surface monitoring and analysis approach succesfully provided reasonable results compared to the conventional human effort analysis approach. This findings provide a promising signal that more AI based technologies can successfully applied in HPMS business area in the next future. Morevoer, the achievement of automated HPMS can also be possible in the near future.
고속도로 2차 사고는 선행 사고(1차 사고) 또는 전방 고장 차량에 의해 교통흐름이 변화된 상황에서 발생하는 사고로, 이에 대한 효과적인 교통안전 관리전략이 필요하다. 그러나 일반사고에 비해 데이터 표본이 부족하여 신뢰성 있는 대응 전략 수립에 어려움이 있다. 본 연구는 고속도로에서 발생하는 2차 사고의 발생 주요 요인을 식별하고 예측하기 위해 BERT(Bidirectional Encoder Representations from Transformers) 기반 텍스트 분석 모델과 전통적 머신러닝 모델 (XGBoost, RandomForest, CatBoost)을 비교하였다. 교통사고 세부기록, 원클릭 속보자료 등 비정형 텍스트 및 정형 데 이터를 수집하고 1차 사고에 관한 시공간적 동적 변수를 통합하여 인공지능 기반의 사고 예측 프레임워크를 구축하였다. 특히, BERT 기반 모델을 통해 교통사고 문맥 정보를 고려하여 단어 삽입 및 대체 기법에 따른 2차사고 데이터 표본을 보완하였다. 또한, 설명가능한 AI(XAI) 기법을 활용하여 주요 사고 요인의 기여도를 시각적으로 해석하고 사고 예방 및 정책 수립에 필요한 정보를 제공하였다. 연구 결과, 제안된 하이브리드 접근법 기반 연구 프레임워크는 높은 정확도의 2 차 사고 발생 가능성 예측에 효과적이며, 교통사고관리시스템의 신뢰성과 효율성 향상에 핵심적인 기여를 할 것으로 기 대된다.
인공지능의 발전은 검색엔진, SNS, ChatGPT 등 다양한 분야에서 혁신을 이끌며 사회와 산업 전반에 변화를 가져오고 있다. 특히, 교 통 분야에서는 AI 기반 기술이 교통정보 수집 및 분석 방식에 변화를 주며, 새로운 활용 가능성을 제시하고 있다. 과거 육안 계수 방 식에 의존했던 교통량 조사는 현재 CCTV 영상과 딥러닝 객체 인식 기술을 활용해 신뢰성과 정확성이 크게 향상되었다. AI 기반 교통 솔루션의 도입으로 교통량 조사 데이터는 정책 수립, 운영 개선, 사회간접자본 건설 등 다양한 분야에서 중요한 기초 자료로 활용되고 있다. 이에 본 연구에서는 YOLO v8을 활용하여 차량 축 인식 기반 차종 분류의 정확성을 향상시키고, 기존 촬영 기법과 비교·분석을 통해 최적의 인식기법을 제시하고자 한다.
이 연구는 독일고전철학과 현대 인공지능 기술을 연결하는 시도를 다 룬다. 셸링은 자연을 단순한 물리적 실체가 아닌 내재된 잠재력과 창조 성을 가진 유기체로 보았으며, 이러한 관점은 인공지능(AI)의 발전과 창 의적 활동에 적용될 수 있다. 또한 AI가 데이터와 알고리즘, 인간과의 상호작용을 통해 연결되고 재창조되는 과정을 셸링의 자연철학과 비교하 여, 종교적인 의미에서 주체성 문제를 탐구하고자 한다. 셸링의 철학에 서, 신적인 전체와의 연결을 통한 자의식의 근거를 고려하며, 인간과 자 연, 주체와 객체 간의 상호작용을 설명하는 '연결사(correlat)' 개념을 강 조한다. 셸링은 자연과 정신의 관계를 단순한 인과적 연결로 보지 않고, 상호작용을 통한 생산적 과정을 통해 이해해야 한다고 강조한다. 이는 AI의 발전과 인간의 자의식 간의 유사성을 드러내며, AI가 지닌 자발성 은 자연의 복잡성과 연결된다고 볼 수 있다. 따라서 인공지능도 인간과 유사한 방식으로 자의식을 지닐 가능성을 내포하고 있으며, 이는 현대 사회에서 AI와 인간의 관계를 새롭게 이해하는 데 기여할 수 있다. AI는 상징적 접근과 연결주의를 결합한 인지 설계를 통해 종교와 같은 고차원 적인 기능을 모델링할 수 있음을 보여준다.
최근 ChatGPT로 대표되는 인공지능의 급격한 발전은 인공지능 에 대한 낙관과 비관이 엇갈리는 가운데 기독교 선교가 새롭고도 실제적 인 방향을 모색해야 할 필요성을 제기했다. 이를 위해 본 연구는 행위자 -네트워크 이론을 주요 이론적 틀로 활용하여 인공지능을 단순한 도구가 아닌 인간과 상호작용하는 행위자로 인식한다. 이러한 관점에서 현재 인공지능 기술의 최전선에 있는 거대 언어 모델의 기술적 특성과 작동원리를 상세히 분석하여 인공지능이 인간과 맺는 관계에 주목한다. 이러한 이해를 토대로 인공지능과의 선교적 접점을 모색하기 위한 방안은 첫째, 인공지능을 선교 현장으로 인식하는 것, 둘째, 인간에게만 주어진 선교적 삶을 사는 것. 셋째, 인공지능을 선교사역의 협력자로 받아들이는 것, 넷째, 오픈소스 거대 언어 모델을 활용한 선교적 목적의 인공지능을 개발하는 것이다. 본 연구는 인공지능 시대의 기독교 선교 가 단순히 인공지능을 도구로 활용하는 차원을 넘어, 인공지능과의 협력적 관계를 통해 새로운 선교의 지평을 열어가야 함을 제안한다. 이는 데이비드 보쉬가 주장한 것처럼, 선교는 각 시대의 변화에 따라 새로운 패러다임으로 변화되어야 한다는 관점에 기반한다.
This study addresses the critical challenge of enhancing vehicle classification accuracy in traffic surveys by optimizing the conditions for vehicle axle recognition through artificial intelligence. With current governmental traffic surveys facing issues—particularly the misclassification of freight vehicles in systems employing a 12-category vehicle classification—the research proposes an optimal imaging setup to improve axle recognition accuracy. Field data were acquired at busy intersections using specialized equipment, comparing two camera installation heights under fixed conditions. Analysis revealed that a shooting height of 8.5m combined with a 50°angle significantly reduces occlusion and captures comprehensive vehicle features, including the front, side, and upper views, which are essential for reliable deep learning-based classification. The proposed methodology integrates YOLOv8 for vehicle detection and a CNN-based Deep Sort algorithm for tracking, with image extraction occurring every three frames. The axle regions are then segmented and analyzed for inter-axle distances and patterns, enabling classification into 15 categories—including 12 vehicle types and additional classes such as pedestrians, motorcycles, and personal mobility devices. Experimental results, based on a dataset collected at a high-traffic point in Gwangju, South Korea, demonstrate that the optimized conditions yield an overall accuracy of 97.22% and a PR-Curve AUC of 0.88. Notably, the enhanced setup significantly improved the classification performance for complex vehicle types, such as 6-axle dump trucks and semi-trailers, which are prone to misclassification under lower installation heights. The study concludes that optimized imaging conditions combined with advanced deep learning algorithms for axle recognition can substantially improve vehicle classification accuracy. These findings have important implications for traffic management, infrastructure planning, road maintenance, and policy-making by providing a more reliable and precise basis for traffic data analysis.
Structures compromised by a seismic event may be susceptible to aftershocks or subsequent occurrences within a particular duration. Considering that the shape ratios of sections, such as column shape ratio (CSR) and wall shape ratio (WSR), significantly influence the behavior of reinforced concrete (RC) piloti structures, it is essential to determine the best appropriate methodology for these structures. The seismic evaluation of piloti structures was conducted to measure seismic performance based on section shape ratios and inter-story drift ratio (IDR) standards. The diverse machine-learning models were trained and evaluated using the dataset, and the optimal model was chosen based on the performance of each model. The optimal model was employed to predict seismic performance by adjusting section shape ratios and output parameters, and a recommended approach for section shape ratios was presented. The optimal section shape ratios for the CSR range from 1.0 to 1.5, while the WSR spans from 1.5 to 3.33, regardless of the inter-story drift ratios.