검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2025.03 구독 인증기관·개인회원 무료
        자율주행 차량이 상용화됨에 따라 연구에 사용할 수 있는 자율주행 차량의 주행궤적 자료를 제공하고 연구하는 기관이 증가하고 있다. 캘리포니아 자동차관리국은 사고 당시 차량의 거동과 주변 환경을 기록한 자율주행 차량 사고 보고서를 제공한다. Waymo는 라이다, 카메라 등을 통해 수집한 자율주행 차량의 실주행 자료를 제공한다. 본 연구에서는 캘리포 니아 자동차관리국에서 제공하는 자율주행 차량 사고 보고서와 Google Street Map을 이용하여 사고 당시의 도로유형과 도로환경요소 및 사고 당시 상황을 파악하고, 베이지안 네트워크(BN)을 통해 자율주행 차량 사고 영향요인을 파악하였 다. 랜덤 포레스트를 통해 앞에서 파악한 자율주행 차량 사고 영향요인들의 변수 중요도를 추출하고 이를 기반으로 자율 주행 차량 주행 시나리오를 도출하였다. 도출한 자율주행 차량 주행 시나리오와 유사한 상황을 보이는 Waymo Open Dataset의 자율주행 차량 실제 주행궤적을 매칭하여 자율주행 차량 주행 행태 기반 사고 위험도 평가 지표를 도출하였 다. 본 연구의 결과는 앞으로 도로환경요소 및 자율주행 차량 주행궤적에 따른 자율주행 차량 주행 안전성 연구의 기반 이 될 것으로 기대된다.
        2.
        2025.03 구독 인증기관 무료, 개인회원 유료
        고속도로 2차 사고는 선행 사고(1차 사고) 또는 전방 고장 차량에 의해 교통흐름이 변화된 상황에서 발생하는 사고로, 이에 대한 효과적인 교통안전 관리전략이 필요하다. 그러나 일반사고에 비해 데이터 표본이 부족하여 신뢰성 있는 대응 전략 수립에 어려움이 있다. 본 연구는 고속도로에서 발생하는 2차 사고의 발생 주요 요인을 식별하고 예측하기 위해 BERT(Bidirectional Encoder Representations from Transformers) 기반 텍스트 분석 모델과 전통적 머신러닝 모델 (XGBoost, RandomForest, CatBoost)을 비교하였다. 교통사고 세부기록, 원클릭 속보자료 등 비정형 텍스트 및 정형 데 이터를 수집하고 1차 사고에 관한 시공간적 동적 변수를 통합하여 인공지능 기반의 사고 예측 프레임워크를 구축하였다. 특히, BERT 기반 모델을 통해 교통사고 문맥 정보를 고려하여 단어 삽입 및 대체 기법에 따른 2차사고 데이터 표본을 보완하였다. 또한, 설명가능한 AI(XAI) 기법을 활용하여 주요 사고 요인의 기여도를 시각적으로 해석하고 사고 예방 및 정책 수립에 필요한 정보를 제공하였다. 연구 결과, 제안된 하이브리드 접근법 기반 연구 프레임워크는 높은 정확도의 2 차 사고 발생 가능성 예측에 효과적이며, 교통사고관리시스템의 신뢰성과 효율성 향상에 핵심적인 기여를 할 것으로 기 대된다.
        3,000원
        3.
        2025.03 구독 인증기관 무료, 개인회원 유료
        최근 자율주행 기술의 급속한 발전으로 자율주행 기술이 탑재된 차량이 눈에 띄고 있다. 자율주행 기술로 인해 교통사 고 감소와 효율적인 교통운영을 유도할 수 있는데, 주행 환경뿐만 아니라 주차 환경에서도 큰 이점을 보이고 있다. 이러 한 자율주행 기술을 기반으로 한 로봇 파킹 시스템은 주차 소요 시간을 단축하고 주차 공간을 더욱 효율적으로 활용할 수 있는데, 이는 특히 교통약자들의 이동 편의성을 크게 향상시킬 수 있다. 따라서 본 연구에서는 차량의 진출입이 빈번 하고 보행자의 이동이 많은 고속도로 휴게시설을 대상으로 교통약자를 고려한 로봇 파킹 시스템을 도입하여 안정성과 효율성을 평가하고자 한다. 이를 위해 2010년부터 2022년까지의 고속도로 휴게시설 사고 데이터를 분석하여, 사고 빈도 와 사고 심각도를 고려한 EPDO(Equivalent Property Damage Only) 값이 높은 중부내륙선 충주휴게소(창원방향)를 분석 대상지로 선정하였다. 미시교통 시뮬레이션 VISSIM을 활용하여 대상 휴게소의 도로 및 주차장 네트워크를 구축하고 시 뮬레이션하였다. 안전성 평가를 위해 DRAC(Deceleration Rate to Avoid Crash) 및 PET(Post Encroachment Time) 지 표 등을 활용하였으며, 효율성 평가로는 주차 회전율(Parking Turning Rate) 및 정지횟수(Number of Stops) 지표 등을 사용하여 비교하였다. 본 연구는 기존 연구들과 달리 교통약자의 관점에서 로봇 파킹 시스템의 효과를 분석했다는 점에 서 차별성을 가진다.
        3,000원
        4.
        2024.03 구독 인증기관·개인회원 무료
        자율주행차량을 상용화하기 위한 노력이 계속되고 있으며, 완전 자율주행 교통 환경이 조성되기 전까지 자율주행차량과 일반 차량 이 혼재된 혼합교통류가 형성될 것이라 예상된다. 이러한 혼합교통류에서 자율주행차량과 일반 차량은 주행 행태가 다르므로 기존에 는 발생하지 않았던 사고 위험상황을 유발할 수 있으며, 따라서 자율주행차량의 도입에 따른 사고 위험상황을 사전에 파악하고 이에 대한 안전관리 전략을 마련할 필요가 있다. 이러한 안전관리 전략 수립의 첫 단계로 자율주행차량 도입 시 자율주행차량이 사고위험 상황에 처할 수 있는 취약 구간과 취약 상황을 정의해야 한다. 기존 연구의 경우 자율주행 취약 구간 및 취약 상황 정의를 위해 전문 가 설문 조사 방법을 사용하였으며, 자율주행차량 데이터 구득에 어려움이 있어 주로 시뮬레이션 분석을 진행하였다. 본 연구에서는 더 실질적이고 구체적인 자율주행 취약 구간과 취약 상황을 정의하기 위해 두 가지 출처의 데이터를 활용하였으며, 다양한 방법론을 적용하여 과학적이고 다각적인 분석 결과를 도출하였다. 세종시 자율주행 실증구간에서 수집할 수 있는 자율주행차량 주행 궤적 데이 터를 활용해서는 사고위험 판단 안전 지표를 기준으로 사고 취약 구간 및 상황을 정의하였으며, 캘리포니아 DMV 자율주행차량 사고 데이터를 활용해서 연관규칙 기법과 토픽 모델링을 적용해 자율주행 사고에 영향을 미친 주요 요인들과 요인들 간의 연관성을 분석하 였다. 최종적으로는 세종시 자율주행차량 데이터 분석 결과와 캘리포니아 DMV 사고보고서 결과를 종합하여 종합적인 자율주행 취약 구간 및 상황을 정의하였다. 향후 본 연구에서 정의한 자율주행 취약 구간과 취약 상황 및 본 연구의 방법론을 활용하여 미래 교통 시스템의 안전 관리 전략을 마련할 수 있으며, 도로 운영자와 관리자의 의사결정을 도울 수 있을 것으로 기대한다.