인공지능의 발전은 검색엔진, SNS, ChatGPT 등 다양한 분야에서 혁신을 이끌며 사회와 산업 전반에 변화를 가져오고 있다. 특히, 교 통 분야에서는 AI 기반 기술이 교통정보 수집 및 분석 방식에 변화를 주며, 새로운 활용 가능성을 제시하고 있다. 과거 육안 계수 방 식에 의존했던 교통량 조사는 현재 CCTV 영상과 딥러닝 객체 인식 기술을 활용해 신뢰성과 정확성이 크게 향상되었다. AI 기반 교통 솔루션의 도입으로 교통량 조사 데이터는 정책 수립, 운영 개선, 사회간접자본 건설 등 다양한 분야에서 중요한 기초 자료로 활용되고 있다. 이에 본 연구에서는 YOLO v8을 활용하여 차량 축 인식 기반 차종 분류의 정확성을 향상시키고, 기존 촬영 기법과 비교·분석을 통해 최적의 인식기법을 제시하고자 한다.
This study addresses the critical challenge of enhancing vehicle classification accuracy in traffic surveys by optimizing the conditions for vehicle axle recognition through artificial intelligence. With current governmental traffic surveys facing issues—particularly the misclassification of freight vehicles in systems employing a 12-category vehicle classification—the research proposes an optimal imaging setup to improve axle recognition accuracy. Field data were acquired at busy intersections using specialized equipment, comparing two camera installation heights under fixed conditions. Analysis revealed that a shooting height of 8.5m combined with a 50°angle significantly reduces occlusion and captures comprehensive vehicle features, including the front, side, and upper views, which are essential for reliable deep learning-based classification. The proposed methodology integrates YOLOv8 for vehicle detection and a CNN-based Deep Sort algorithm for tracking, with image extraction occurring every three frames. The axle regions are then segmented and analyzed for inter-axle distances and patterns, enabling classification into 15 categories—including 12 vehicle types and additional classes such as pedestrians, motorcycles, and personal mobility devices. Experimental results, based on a dataset collected at a high-traffic point in Gwangju, South Korea, demonstrate that the optimized conditions yield an overall accuracy of 97.22% and a PR-Curve AUC of 0.88. Notably, the enhanced setup significantly improved the classification performance for complex vehicle types, such as 6-axle dump trucks and semi-trailers, which are prone to misclassification under lower installation heights. The study concludes that optimized imaging conditions combined with advanced deep learning algorithms for axle recognition can substantially improve vehicle classification accuracy. These findings have important implications for traffic management, infrastructure planning, road maintenance, and policy-making by providing a more reliable and precise basis for traffic data analysis.
고속도로의 제한속도는 교통류, 운행 시간, 에너지 소비, 교통사고 발생률 등에 직접적인 영향을 미치는 중요한 요인이다. 제한속도 의 상향 조정은 운행 시간 단축과 경제적 이점을 가져올 수 있지만, 교통사고 위험성을 높일 수 있으며, 반대로 하향 조정은 사고율을 감소시킬 수 있으나 운행 시간 증가와 교통 혼잡을 초래할 수 있다. 이러한 상반된 영향으로 인해 제한속도 조정이 도로 안전성과 효 율성에 미치는 구체적인 변화를 분석하는 연구가 필요하다. 본 연구는 미시교통시뮬레이션 도구인 VISSIM과 SSAM을 활용하여 제한 속도 및 교통량 변화에 따른 고속도로 구간별 상충횟수를 분석하고, 위험성이 높아지는 구간을 식별하였다. 이를 통해 향후 단속지점 설정과 구간별 맞춤형 개선방안 마련에 실증적인 근거를 제공하고자 한다.