논문 상세보기

산화구리의 광전기화학적 거동 특성 KCI 등재 SCOPUS

Photoelectrochemical Behavior of Cu2O and Its Passivation Effect

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/365956
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국재료학회지 (Korean Journal of Materials Research)
한국재료학회 (Materials Research Society Of Korea)
초록

Recent industrialization has led to a high demand for the use of fossil fuels. Therefore, the need for producing hydrogen and its utilization is essential for a sustainable society. For an eco-friendly future technology, photoelectrochemical water splitting using solar energy has proven promising amongst many other candidates. With this technique, semiconductors can be used as photocatalysts to generate electrons by light absorption, resulting in the reduction of hydrogen ions. The photocatalysts must be chemically stable, economically inexpensive and be able to utilize a wide range of light. From this perspective, cuprous oxide(Cu2O) is a promising p-type semiconductor because of its appropriate band gap. However, a major hindrance to the use of Cu2O is its instability at the potential in which hydrogen ion is reduced. In this study, gold is used as a bottom electrode during electrodeposition to obtain a preferential growth along the (111) plane of Cu2O while imperfections of the Cu2O thin films are removed. This study investigates the photoelectrochemical properties of Cu2O. However, severe photo-induced corrosion impedes the use of Cu2O as a photoelectrode. Two candidates, TiO2 and SnO2, are selected for the passivation layer on Cu2O by by considering the Pourbaix-diagram. TiO2 and SnO2 passivation layers are deposited by atomic layer deposition(ALD) and a sputtering process, respectively. The investigation of the photoelectrochemical properties confirmed that SnO2 is a good passivation layer for Cu2O.

목차
Abstract
 1. 서 론
 2. 실험 방법
 3. 결과 및 고찰
 4. 결 론
 Reference
저자
  • 윤홍관(충남대학교 신소재공학과) | Hongkwan Yun (Department of Materials Science and Engineering, Chungnam National University)
  • 홍순현(충남대학교 신소재공학과) | Soonhyun Hong (Department of Materials Science and Engineering, Chungnam National University)
  • 김도진(충남대학교 신소재공학과) | Dojin Kim (Department of Materials Science and Engineering, Chungnam National University)
  • 김천중(충남대학교 신소재공학과) | Chunjoong Kim (Department of Materials Science and Engineering, Chungnam National University) Corresponding author