Plant growth and morphology are affected by light environments. The morphogenesis and growth of the plants growing in plant factories are different from those grown under sunlight due to the effect of far-red light included in sunlight. The objective of this study was to compare the morphogenesis and growth of cucumber plants grown under artificial sunlight, high pressure sodium lamp (HPS), and HPS with additional far-red light (HPS+FR). The artificial solar (AS) with a spectrum similar to sunlight was manufactured using sulfur plasma lamp, incandescent lamp, and green-reducing optical film. HPS was used as a conventional electrical light source and far-red LEDs were added for HPS+FR. The optical properties of each light source was analyzed. The morphogenesis, growth, and photosynthetic rate were compared in each light source. The ratio of red to far-red lights and phytochrome photostationary state were similar in AS and HPS+FR. There were significant differences in morphology and growth between HPS and HPS+FR, but there were no significant differences between AS and HPS+FR. SPAD was highest in HPS, while photosynthetic rate was higher at AS and HPS. Although the photosynthetic rate in HPS+FR was lower than HPS, the growth was similar in AS. It was because canopy light interception was increased by longer petioles and larger leaf areas induced by FR. It is confirmed that the electrical light with additional far-red light induces similar photomorphogenesis and growth in sunlight spectrum. From the results, we expect that similar results will be obtained by adding far-red light to electrical light sources in plant factories.