Novel N2O2 tetradentate ligands, H-3BPD and H-2BPD were synthesized. Hydrochloric acid salts of Br-3BPD, Cl-3BPD, Br-2BPD and Cl-2BPD having Br and Cl substituents at the para position of the phenol hydroxyl group, were synthesized. The ligands were characterized by C. H. N atomic analysis, 1H NMR, 13C NMR, UV-visible, and mass spectra. The proton dissociation constants (logKn H) of the phenol hydroxyl group and secondary amine of the synthesized N2O2 ligands were shown by four step wise values. The orders of the calculated overall proton dissociation constants (logβp) were Br-3BPD < Cl-3BPD < H-3BPD in case of 3BPD and Br-2BPD < Cl-2BPD < H-2BPD in case of 2BPD respectively. The order agreed well with that of para Hammett substituent constants(δp). The stability constants(logKML) of the complexes between the synthesized ligands and transition metal(II) ions agreed with the order of logβp of the ligands. The order of the logKML value of the each transition metal (II) ion was Co(Ⅱ) < Ni(Ⅱ) < Cu(Ⅱ) > Zn(Ⅱ) > Cd(Ⅱ) > Pb(Ⅱ), which agreed well with that of Iriving-Williams series.