지금까지 고장예측에 관한 연구 논문들은 여러 분야에서 많이 다루어져 왔다. 그 대표적인 예측 방법 중에 하나인 FTA(Fault Tree Analysis)가 가장 많이 사용되어져 왔으며, 여러 산업분야에서 가장 활발하게 시스템 및 부품에 대한 고장 가능성 진단을 실시하여 왔다. 하지만 기존의 전통적인 FTA 방법을 사용하는데 있어서 몇 가지 문제점을 발견할 수가 있었다. 즉, 지금까지 FTA를 실시하는 과정에 있어서 시스템 및 부품에 대한 데이터의 자료가 정확하다는 전제하에 고장 값을 예측하여 왔다. 만일 시스템 및 부품에 대한 불확실한 데이터나 부정확한 자료를 동시에 가지고 있다면 지금까지 사용하여 왔던 전통적인 FTA를 사용하여 고장 값을 예측하여 정확한 값을 찾아내기란 어려운 것이라 할 수가 있다. 이와 같은 문제점을 해결하기 위해서는 본 연구에서 제시하는 Fuzzy FTA를 사용하는 것이 보다 바람직할 것이며, 이러한 방법을 사용하여 불확실하고 부정확한 데이터를 가지고 고장진단을 실시하여 고장가능성 값을 찾아내어 전체 시스템의 고장 발생 가능성을 예측하는 것이 이 논문의 목적이라 할 수가 있다.