It is very important to assess accurately the terms which are included in the heat budget equation of soil surface because they are used in the GCM and meso-scale circulation modeling as well as in the micrometeorological studies. Each terms in the heat budget equation change according to the soil moisture content. So, it is necessary to specify clearly the relations between soil moisture content and these terms. Special experiment with ricrometeorological measurements was executed to study these relations at Environmental Research Center of Tsukuba University, Japan. The results are as follow: 1. The soil moisture contents of 1 ㎝ and 4 ㎝ depth are oscillated with one day period in drying process and the amplitude of variation of l cm depth is greater than that of 4 ㎝. 2. Increase in soil moisture contents due to precipitation result in decrease of albedo with step function. 3. Sensible heat is in reverse proportion to the soil moisture content and latent heat is in direct proportion to it. Latent heat is more sensitive than sensible heat according to the soil moisture variation. Net long wave radiation have high correlation with soil moisture. 4. Comparing with the radiative term with the flux term in wetting process due to precipitation, the energy transfer of the aero and thermodynamic flux is greater than that of the radiative heat flux.