Photosynthetic characteristics and growth responses of Phalaenopsis Queen Beer ‘Mantefon’ orchid were determined in plants exposed to variable carbon dioxide (CO2) concentrations at 2-, 24-, and 36-weeks age (i.e., corresponding to juvenile, young, and mature vegetative growth stages, respectively). Plants were grown at 400 (control), 800, or 1,600 μmol・mol-1 CO2 for 6 hours during the nighttime for 32 weeks. Phalaenopsis ‘Mantefon’ in 2- and 24-week-old plants grown at 1,600 μmol・mol-1 CO2 had increased leaf number and net CO2 uptake compared with the plants grown at 400 μmol・mol-1 CO2. In 36-week-old of Phalaenopsis ‘Mantefon’, leaf number was significantly greater in plant grown at 800 and 1,600 μmol・mol-1 conditions compared with plants grown at 400 μmol・mol-1 CO2. Leaves that emerged after the start of the CO2 treatment were initially longer in the plants grown at 1,600 μmol・mol-1 CO2 than at 400 μmol·mol-1 C O2, but the final leaf length was shortest in the plants grown at 1,600 μmol・mol-1 CO2 condition. Plants showed crassulancean acid metabolism characteristic of nighttime CO2 uptake regardless plant growth stages. We found that growers may be able to promote leaf growth with increasing leaf number and reducing time to leaf initiation in the 36-week-old (i.e., mature stage) plants with 800 – 1,600 μmol·mol-1 CO2 and 2- and 24-week-old (i.e., juvenile and young stages) plants with 1,600 μmol·mol-1 C O2 for Phalaenopsis ‘Mantefon’.