The objective of this study was to estimate the trends of air quality in the study area by analyzing monthly and seasonal concentration trends obtained from sampled data. To this aim, the mass concentrations of PM2.5 in the air were analyzed, as well as those of metals, ions, and total carbon within the PM2.5. The mean concentration of PM2.5 was 22.7 ㎍/㎥. The mass composition of PM2.5 was as follows: 31.1% of ionic species, 2.2% of metallic species, and 26.7% of carbonic species (EC and OC). Ionic species, especially sulfate, ammonium, and nitrate, were the most abundant in the PM2.5 and exhibited a high correlation coefficient with the mass concentration of PM2.5. Seasonal variations of PM2.5 showed a similar pattern to those of ionic and metallic species, with high concentrations during winter and spring. PM2.5 also had a high correlation with the ionic species NO3 - and NH4 +. In addition, NH4 + was highly correlated with NO3 -. Through factor analysis, we identified four controlling factors, and determined the pollution sources using the United States Environmental Protection Agency(U.S. EPA) pollution profile. The first factor, accounting for 19.1% of PM2.5 was attributed to motor vehicles and heating-related sources: the second factor indicated industry-related sources and secondary particles, and the other factors indicated soil, industry-related and marine sources. However, the pollution profile used in this study may be somewhat different from the actual situation in Korea, since it was obtained from US EPA. Therefore, to more accurately estimate the pollutants present in the air, a pollution profile for Korea should be produced.