Global Carbon Cycle and Budget Study
A global carbon cycle model (GCCM), that incorporates interaction among the terrestrial biosphere, ocean, and atmosphere, was developed to study the carbon cycling and global carbon budget, especially due to anthropogenic CO2 emission. The model that is based on C, ^13C and ^14C mass balance, was calibrated with the observed CO2 concentration, δ^13C and Δ^14C in the atmosphere, Δ^14C in the soil, and Δ^14C in the ocean. Also, GCCM was constrained by the literature values of oceanic carbon uptake and CO2 emissions from deforestation. Inputs (forcing functions in the model) were the C, ^13C and ^14C as CO2 emissions from fossil fuel use, and ^14C infection into the stratosphere by bomb-tests. The simulated annual carbon budget of 1980s due to anthropogenic CO2 shows that the global sources were 5.43 Gt-C/yr from fossil fuel use and 0.91 Gt-C/yr from deforestation, and the sinks were 3.29 Gt-C/yr in the atmosphere, 0.90 Gt-C/yr in the terrestrial biosphere and 2.15 Gt-C/yr in the ocean. The terrestrial biosphere is currently at zero net exchange with the atmosphere, but carbon is lost via organic carbon runoff to the ocean. The model could be utilized for a variety of studies in CO_2 policy and management, climate modeling, CO2 impacts, and crop models.