PURPOSES : In this study, a series of fundamental falling head permeability tests were conducted on a binary particle mix bedding to determine the minimum water level, bedding layer thickness, and amount of dust that can result in the stable permeability with high repeatability. The determined condition is used to develop a CFD-DEM coupled clogging model that can explain the movement of dust particles in flowing water of a block pavement system.
METHODS: A binary particle mixture is utilized to experimentally simulate an ideal bedding layer of a block pavement system. To obtain a bedding layer with maximum packing degree, the well-known particle packing degree model, i.e., the modified Toufar model, was utilized. The permeability of the bedding layer for various water levels, bedding layer thicknesses, and amounts of dust was calculated. The permeability for a small water level drop was also plotted to evaluate the effect of dust on the bedding layer clogging.
RESULTS: It was observed that a water level of 100 mm, bedding depth of 70 mm, and dust amount of 0.3 g result in a stable permeability condition with high repeatability. The relationship between the minimum dust amount and surface clogging of the bedding layer was suggested based on the evaluation of the volumetric calculation of the particle and void and the permeability change in the test.
CONCLUSIONS: The test procedure to determine the minimum water level, bedding thickness, and dust amount was successfully proposed. The mechanism of clogging on the surface of the bedding layer was examined by relating the volumetric characteristics of dust to the clogging surface.